找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 3D Point Cloud Analysis; Traditional, Deep Le Shan Liu,Min Zhang,C.-C. Jay Kuo Book 2021 The Editor(s) (if applicable) and The Author(s), u

[復制鏈接]
查看: 32351|回復: 37
樓主
發(fā)表于 2025-3-21 19:04:55 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱3D Point Cloud Analysis
期刊簡稱Traditional, Deep Le
影響因子2023Shan Liu,Min Zhang,C.-C. Jay Kuo
視頻videohttp://file.papertrans.cn/101/100749/100749.mp4
發(fā)行地址Comprehensive investigation of point cloud processing includes traditional, deep learning, and explainable ML methods.Tackles 3D computer vision tasks (object recognition, segmentation, detection and
圖書封面Titlebook: 3D Point Cloud Analysis; Traditional, Deep Le Shan Liu,Min Zhang,C.-C. Jay Kuo Book 2021 The Editor(s) (if applicable) and The Author(s), u
影響因子.This book introduces the point cloud; its applications in industry, and the most frequently used datasets. It mainly focuses on three computer vision tasks -- point cloud classification, segmentation, and registration -- which are fundamental to any point cloud-based system. An overview of traditional point cloud processing methods helps readers build background knowledge quickly, while the deep learning on point clouds methods include comprehensive analysis of the breakthroughs from the past few years. Brand-new explainable machine learning methods for point cloud learning, which are lightweight and easy to train, are then thoroughly introduced. Quantitative and qualitative performance evaluations are provided. The comparison and analysis between the three types of methods are given to help readers have a deeper understanding...With the rich deep learning literature in 2D vision, a natural inclination for 3D vision researchers is to develop deep learning methods for point cloud processing. Deep learning on point clouds has gained popularity since 2017, and the number of conference papers in this area continue to increase. Unlike 2D images, point clouds do not have a specific orde
Pindex Book 2021
The information of publication is updating

書目名稱3D Point Cloud Analysis影響因子(影響力)




書目名稱3D Point Cloud Analysis影響因子(影響力)學科排名




書目名稱3D Point Cloud Analysis網(wǎng)絡公開度




書目名稱3D Point Cloud Analysis網(wǎng)絡公開度學科排名




書目名稱3D Point Cloud Analysis被引頻次




書目名稱3D Point Cloud Analysis被引頻次學科排名




書目名稱3D Point Cloud Analysis年度引用




書目名稱3D Point Cloud Analysis年度引用學科排名




書目名稱3D Point Cloud Analysis讀者反饋




書目名稱3D Point Cloud Analysis讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:00:45 | 只看該作者
978-3-030-89182-4The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
板凳
發(fā)表于 2025-3-22 01:11:33 | 只看該作者
地板
發(fā)表于 2025-3-22 06:37:12 | 只看該作者
5#
發(fā)表于 2025-3-22 11:50:24 | 只看該作者
6#
發(fā)表于 2025-3-22 15:06:55 | 只看該作者
https://doi.org/10.1007/978-3-642-88544-0and advanced driver assistance systems (ADAS). However, point cloud data is sparse, irregular, and unordered by nature. In addition, the sensor typically produces a large number (tens to hundreds of thousands) of raw data points, which brings new challenges, as many applications require real-time pr
7#
發(fā)表于 2025-3-22 20:03:50 | 只看該作者
,Die Flugeinheit und die Bodenger?te,ption. Since 2017, researchers have become inclined to train end-to-end networks for tasks like point cloud classification, semantic segmentation, and object detection. More recently, other tasks like registration and odometry have also been solved using Deep learning. These newer data-driven method
8#
發(fā)表于 2025-3-22 23:34:23 | 只看該作者
https://doi.org/10.1007/978-3-642-88545-7their interpretation. These methods are an extension of successive subspace learning (SSL) from 2D images to 3D point clouds. SSL offers a lightweight unsupervised feature learning method based on the inherent statistical properties of data units. The model is significantly smaller than deep neural
9#
發(fā)表于 2025-3-23 01:32:03 | 只看該作者
https://doi.org/10.1007/978-3-642-88545-7is more effective and efficient. It is common for new researchers to focus only on Deep learning methods while lacking a solid foundation of the fundamental knowledge of traditional methods. However, the traditional point cloud processing methods are the root of Deep learning methods, and they are s
10#
發(fā)表于 2025-3-23 06:24:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 01:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
承德市| 新闻| 故城县| 城市| 宾阳县| 大同县| 苏尼特左旗| 鄂州市| 新邵县| 永济市| 怀远县| 漠河县| 马公市| 大名县| 宜黄县| 阳原县| 深圳市| 河北区| 东方市| 岫岩| 常州市| 广州市| 革吉县| 凤城市| 团风县| 册亨县| 游戏| 龙胜| 阳泉市| 青冈县| 寿宁县| 石台县| 安徽省| 台州市| 普兰店市| 化德县| 宜兰县| 花莲市| 那坡县| 德清县| 房产|