找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: 3+1 Formalism in General Relativity; Bases of Numerical R Eric Gourgoulhon Book 2012 Springer-Verlag Berlin Heidelberg 2012 3+1 formalism a

[復(fù)制鏈接]
查看: 22382|回復(fù): 46
樓主
發(fā)表于 2025-3-21 18:34:07 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
期刊全稱3+1 Formalism in General Relativity
期刊簡(jiǎn)稱Bases of Numerical R
影響因子2023Eric Gourgoulhon
視頻videohttp://file.papertrans.cn/101/100629/100629.mp4
發(fā)行地址Introductory text based on lectures and graduate-level courses.Detailed derivations make this a self-contained and complete exposition of the subject matter.Authored by a leading experts in the field.
學(xué)科分類Lecture Notes in Physics
圖書封面Titlebook: 3+1 Formalism in General Relativity; Bases of Numerical R Eric Gourgoulhon Book 2012 Springer-Verlag Berlin Heidelberg 2012 3+1 formalism a
影響因子.This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar ma
Pindex Book 2012
The information of publication is updating

書目名稱3+1 Formalism in General Relativity影響因子(影響力)




書目名稱3+1 Formalism in General Relativity影響因子(影響力)學(xué)科排名




書目名稱3+1 Formalism in General Relativity網(wǎng)絡(luò)公開度




書目名稱3+1 Formalism in General Relativity網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱3+1 Formalism in General Relativity被引頻次




書目名稱3+1 Formalism in General Relativity被引頻次學(xué)科排名




書目名稱3+1 Formalism in General Relativity年度引用




書目名稱3+1 Formalism in General Relativity年度引用學(xué)科排名




書目名稱3+1 Formalism in General Relativity讀者反饋




書目名稱3+1 Formalism in General Relativity讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:05:16 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:49:23 | 只看該作者
Introduction,s by themselves cannot provide a correlation - tween structure and energy. Even mutations of specific active site residues, which are extremely useful, cannot tell us about the totality of the interaction between the active site and the substrate. In fact, short of inventing experiments that allow one to meas978-1-4020-0415-5978-0-306-46934-3
地板
發(fā)表于 2025-3-22 06:36:09 | 只看該作者
5#
發(fā)表于 2025-3-22 09:16:16 | 只看該作者
6#
發(fā)表于 2025-3-22 14:09:01 | 只看該作者
7#
發(fā)表于 2025-3-22 19:03:56 | 只看該作者
8#
發(fā)表于 2025-3-23 00:38:32 | 只看該作者
3+1 Equations for Matterand Electromagnetic Field,are based on theeffective sound speed approach. Both two-dimensional models andthree-dimensional models are presented. As meteorological effects playan important role in atmospheric acoustics, selected topics fromboundary layer meteorology and the theory of turbulence are alsopresented.978-1-4020-0390-5978-94-010-0660-6
9#
發(fā)表于 2025-3-23 02:29:06 | 只看該作者
10#
發(fā)表于 2025-3-23 07:58:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 03:57
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
耒阳市| 塔河县| 府谷县| 德庆县| 陇川县| 乌苏市| 敦化市| 东平县| 郎溪县| 正蓝旗| 靖州| 和硕县| 基隆市| 铜梁县| 社旗县| 六安市| 屏东市| 定边县| 青浦区| 于田县| 旌德县| 黄龙县| 弋阳县| 旺苍县| 望奎县| 株洲市| 策勒县| 高阳县| 万载县| 高陵县| 杭锦旗| 莱州市| 吉安市| 兖州市| 泸西县| 三穗县| 北碚区| 伊川县| 肇源县| 靖宇县| 乾安县|