找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 2018 MATRIX Annals; David R. Wood (Editor-in-Chief),Jan de Gier,Terenc Book 2020 The Editor(s) (if applicable) and The Author(s), under ex

[復制鏈接]
11#
發(fā)表于 2025-3-23 11:52:28 | 只看該作者
12#
發(fā)表于 2025-3-23 15:28:51 | 只看該作者
https://doi.org/10.1007/978-3-540-73535-9al in several recent results in geometric analysis. In these lectures I will focus mostly on the applications to partial differential equations, and to estimates on eigenvalues. These lectures were presented at the MATRIX program on “Recent trends on Nonlinear PDE of Elliptic and Parabolic type” at
13#
發(fā)表于 2025-3-23 19:59:44 | 只看該作者
B. Haschberger,J. Hesse,M. Heiden,R. Seitzarabolic Type” concerning the qualitative properties of solutions to some non local reaction-diffusion equations of the form . where . is a bounded smooth compact “obstacle”, . is non local operator and . is a bistable nonlinearity. When . is convex and the nonlocal operator . is a continuous operat
14#
發(fā)表于 2025-3-24 01:54:36 | 只看該作者
15#
發(fā)表于 2025-3-24 05:15:16 | 只看該作者
16#
發(fā)表于 2025-3-24 07:41:09 | 只看該作者
17#
發(fā)表于 2025-3-24 14:32:01 | 只看該作者
18#
發(fā)表于 2025-3-24 16:53:39 | 只看該作者
19#
發(fā)表于 2025-3-24 19:28:20 | 只看該作者
https://doi.org/10.1007/978-3-540-73535-9ary possesses two connected components, one endowed with a Dirichlet datum, and the other endowed with a Neumann datum. The problem can also be reformulated as a nonlocal problem on the component endowed with the Dirichlet datum. A series of recent symmetry results are presented and compared with the existing literature.
20#
發(fā)表于 2025-3-24 23:39:05 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 09:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
怀宁县| 肥城市| 正定县| 饶平县| 长沙县| 阳朔县| 哈尔滨市| 临清市| 盱眙县| 巍山| 迭部县| 淳安县| 新竹市| 株洲市| 甘孜县| 上林县| 镇沅| SHOW| 林州市| 丰宁| 社旗县| 峨山| 云和县| 馆陶县| 湖北省| 浦北县| 长沙县| 获嘉县| 怀远县| 陆丰市| 洛南县| 黑龙江省| 清丰县| 宜昌市| 微山县| 额尔古纳市| 吉林省| 南陵县| 长治市| 方正县| 白水县|