找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: 17 Lectures on Fermat Numbers; From Number Theory t Michal K?í?ek,Florian Luca,Lawrence Somer Book 2001 Springer-Verlag New York 2001 Ferma

[復(fù)制鏈接]
樓主: 相似
31#
發(fā)表于 2025-3-27 00:37:27 | 只看該作者
32#
發(fā)表于 2025-3-27 04:47:58 | 只看該作者
33#
發(fā)表于 2025-3-27 08:28:53 | 只看該作者
Cemal Kavalc?o?lu,Bülent BilgehanLet {..}. be an increasing sequence of positive integers. In this chapter we investigate some conditions under which the sum of the series . is an irrational number, and then we apply these results to the case for which the sequence {..}. is the sequence of Fermat numbers.
34#
發(fā)表于 2025-3-27 12:21:42 | 只看該作者
35#
發(fā)表于 2025-3-27 17:27:02 | 只看該作者
https://doi.org/10.1007/978-3-030-04275-2In this chapter we show how to apply Fermat numbers to generate infinitely many pseudoprimes and superpseudoprimes. To define pseudoprimes and superpseudoprimes, we will need to make use of Fermat’s little theorem which is a centerpiece of number theory. It gives a fundamental property of primes and is the basis of most tests for primality.
36#
發(fā)表于 2025-3-27 18:15:25 | 只看該作者
Studies in Systems, Decision and ControlWe will explore generalizations of Fermat numbers that share many of the same properties of the Fermat numbers; these properties were given in earlier chapters. We will also investigate other numbers such as the Cullen numbers, which bear some resemblance to the Fermat numbers.
37#
發(fā)表于 2025-3-28 00:53:56 | 只看該作者
38#
發(fā)表于 2025-3-28 03:55:37 | 只看該作者
39#
發(fā)表于 2025-3-28 08:34:17 | 只看該作者
17 Lectures on Fermat Numbers978-0-387-21850-2Series ISSN 1613-5237 Series E-ISSN 2197-4152
40#
發(fā)表于 2025-3-28 12:42:10 | 只看該作者
https://doi.org/10.1007/978-0-387-21850-2Fermat; Fermat Numbers; History of Mathematics; Mersenne number; Prime; number theory
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 17:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙县| 昌邑市| 彰武县| 九江县| 大石桥市| 石屏县| 新乡县| 张北县| 威远县| 巴中市| 九江县| 琼结县| 永定县| 商水县| 永泰县| 海宁市| 万山特区| 渭南市| 天全县| 黔东| 高阳县| 六盘水市| 桦南县| 滦南县| 松滋市| 安庆市| 耿马| 腾冲县| 阿克| 枣强县| 彰武县| 蓬莱市| 日喀则市| 和平县| 镶黄旗| 海丰县| 大同县| 滦平县| 余干县| 海原县| 含山县|