找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 15th Chaotic Modeling and Simulation International Conference; Christos H. Skiadas,Yiannis Dimotikalis Conference proceedings 2023 The Edi

[復(fù)制鏈接]
樓主: 法庭
61#
發(fā)表于 2025-4-1 02:57:56 | 只看該作者
J. Koning,G. den Otter,P. Blok,J. J. Visserh the ever-increasing need for more power in combination with greater environmental awareness, there is a growing trend to incorporate also renewable energy sources; such as, wind, photovoltaic arrays, solar-thermal converters, biogas, etc. However, the incorporation of many smaller and often interm
62#
發(fā)表于 2025-4-1 06:29:40 | 只看該作者
https://doi.org/10.1007/978-3-662-05557-1tracted by such kind of systems due to their characteristics. Hence, through this paper, we propose a new chaotic discrete time systems. First, we introduce the mathematical description respectively for the proposed one dimensional (1-D) and two dimensional (2-D) maps. Then, we present the main prop
63#
發(fā)表于 2025-4-1 11:28:27 | 只看該作者
https://doi.org/10.1007/978-3-662-05837-4usually modeled as non-autonomous master-slave systems with harmonic driving. The aim of this work is to provide a transformation suitable for analyzing such systems via standard numerical continuation packages such as MATCONT and AUTO. We transform the original system into a structurally stable gen
64#
發(fā)表于 2025-4-1 15:49:36 | 只看該作者
65#
發(fā)表于 2025-4-1 19:36:23 | 只看該作者
66#
發(fā)表于 2025-4-2 01:01:21 | 只看該作者
67#
發(fā)表于 2025-4-2 05:32:59 | 只看該作者
Psychotherapie und Psychopharmaka,iscrete limit cycles are numerically calculated as chaotic dynamics and for self-organization. Firstly, the 2-D generalized Turing map with two system parameters for simplicity is shown to have pitchfork bifurcation diagrams with phase shift. Secondly, the fractal sets defined by initial points of c
68#
發(fā)表于 2025-4-2 09:34:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:30
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白朗县| 四川省| 澄江县| 平凉市| 庄浪县| 余庆县| 西峡县| 甘泉县| 新安县| 云安县| 筠连县| 晴隆县| 云龙县| 靖州| 舒兰市| 哈密市| 三门县| 隆德县| 庆城县| 江津市| 定安县| 清远市| 绍兴县| 耿马| 澄江县| 辽阳县| 毕节市| 安福县| 岳普湖县| 清远市| 乳源| 鄂托克旗| 哈尔滨市| 九龙城区| 寻乌县| 綦江县| 扎囊县| 庆阳市| 疏附县| 酉阳| 北川|