找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 13th Chaotic Modeling and Simulation International Conference; Christos H. Skiadas,Yiannis Dimotikalis Conference proceedings 2021 The Edi

[復(fù)制鏈接]
樓主: 憑票入場
21#
發(fā)表于 2025-3-25 06:02:37 | 只看該作者
Springer Proceedings in Complexityhttp://image.papertrans.cn/012/image/100306.jpg
22#
發(fā)表于 2025-3-25 10:57:46 | 只看該作者
23#
發(fā)表于 2025-3-25 13:43:06 | 只看該作者
24#
發(fā)表于 2025-3-25 18:36:24 | 只看該作者
25#
發(fā)表于 2025-3-25 23:52:00 | 只看該作者
G. Cvirn,S. Gallistl,J. Kutschera,W. Muntean Thus, the analysis by statistical methods (the time variation of the standard deviation of the component signals of the electroencephalogram, the time variation of the signal variance, the time variation of the skewness, the time variation of the kurtosis, the construction of the recurrence maps co
26#
發(fā)表于 2025-3-26 00:16:59 | 只看該作者
28. H?mophilie-Symposion Hamburg 1997on given by a piecewise constant function which consists of five steps in the form .The considered model is quite simple as a mathematical expression, but with complex dynamics of its solutions. The model is highly sensitive to initial conditions and parameters. Small differences in an initial value
27#
發(fā)表于 2025-3-26 06:07:46 | 只看該作者
28. H?mophilie-Symposion Hamburg 1997nside . symmetric plane-wave spacetimes and correspond to local extrema of the energy functional. They are static in . and stationary in .. Chaos appears at the level of radial stability analysis through the explicitly derived spectrum of eigenvalues. The angular perturbation analysis is suggestive
28#
發(fā)表于 2025-3-26 08:31:00 | 只看該作者
https://doi.org/10.1007/978-3-642-59915-6ginally transformed from the well-known van der Pol model. The complexity of the neural dynamical models consist of multi-parameter nonlinear systems often allow studying only a particular case for some given values of parameters and prevent obtaining general results. In this study, we present gener
29#
發(fā)表于 2025-3-26 15:37:33 | 只看該作者
30#
發(fā)表于 2025-3-26 17:58:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
兴业县| 马关县| 嘉定区| 安义县| 嵩明县| 古交市| 航空| 子洲县| 黄大仙区| 苏尼特左旗| 临西县| 广平县| 黑山县| 行唐县| 龙里县| 茶陵县| 广丰县| 乳山市| 鲁甸县| 东明县| 廊坊市| 北京市| 全州县| 翁牛特旗| 古丈县| 宿州市| 广灵县| 炉霍县| 宝丰县| 香格里拉县| 和硕县| 清流县| 大连市| 德令哈市| 大荔县| 哈尔滨市| 临沧市| 葫芦岛市| 达孜县| 定边县| 迁安市|