找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: 12th Chaotic Modeling and Simulation International Conference; Christos H. Skiadas,Yiannis Dimotikalis Conference proceedings 2020 Springe

[復(fù)制鏈接]
樓主: SCOWL
31#
發(fā)表于 2025-3-26 23:54:00 | 只看該作者
32#
發(fā)表于 2025-3-27 04:45:48 | 只看該作者
,Europ?isierung des nationalen Rechts,gated. It is shown that the presence of variable parameters (semiaxes, modules) lead to the stochastic behavior of the complex deformation field. Complex zero displacement field operators for both separate and coupled elements of the structure are introduced. It is shown that the transposition of se
33#
發(fā)表于 2025-3-27 06:10:12 | 只看該作者
34#
發(fā)表于 2025-3-27 10:48:03 | 只看該作者
,Mathematik w?hrend der Renaissance,, wherein the interdiffusion of the co-precipitates takes place from multiple diffusion sources arranged in a symmetric framework. The precipitation zones are delimited by clear polygonal boundaries in congruence with the spatial distribution of the diffusion pools. 2. A displacement reaction in a s
35#
發(fā)表于 2025-3-27 14:22:17 | 只看該作者
36#
發(fā)表于 2025-3-27 18:47:01 | 只看該作者
37#
發(fā)表于 2025-3-27 23:45:43 | 只看該作者
38#
發(fā)表于 2025-3-28 06:09:08 | 只看該作者
https://doi.org/10.1007/978-3-540-77314-6nce of the weak small-scale uniaxial anisotropy valid for all spatial dimensions .. The ultraviolet divergent Green’s functions are identified and the renormalization of the model is performed in the first order of the corresponding perturbation theory. The explicit form of all renormalization const
39#
發(fā)表于 2025-3-28 10:03:05 | 只看該作者
https://doi.org/10.1007/978-3-540-77314-6 without the accumulation of round-off error caused by numerical iterations. Then, the 1-D map is applied for deriving a 2-D solvable chaos map corresponding to the Belousov-Zhabotinsky (BZ) reaction, which is known to have chemical waves in time. Finally, discrete limit cycles with chaotic dynamics
40#
發(fā)表于 2025-3-28 14:11:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长沙县| 洛阳市| 平顺县| 裕民县| 宁化县| 乌拉特前旗| 永州市| 施秉县| 兴国县| 武汉市| 道真| 新龙县| 沙洋县| 获嘉县| 永康市| 沁源县| 郎溪县| 温泉县| 梁山县| 油尖旺区| 博乐市| 塘沽区| 抚宁县| 云浮市| 遂溪县| 辽源市| 四会市| 彰武县| 辰溪县| 太仆寺旗| 陕西省| 巨野县| 隆德县| 宝应县| 九寨沟县| 广丰县| 蓬安县| 太原市| 临颍县| 安宁市| 唐河县|