找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Quantum Mechanics Using Maple ?; Marko Horbatsch Book 1995 Springer-Verlag Berlin Heidelberg 1995 Potential.applied mathematics.mechanics.

[復(fù)制鏈接]
樓主: incoherent
31#
發(fā)表于 2025-3-26 23:09:18 | 只看該作者
32#
發(fā)表于 2025-3-27 02:13:50 | 只看該作者
33#
發(fā)表于 2025-3-27 08:01:44 | 只看該作者
Special Functions,elations ‘by hand’ in a symbolic computing environment for polynomials that satisfy an ordinary differential equation (ODE) can be found in the pioneering book by J. Feagin [Fe94]. There are various options to attack the problem in Maple. Sometimes one can find solutions in terms of built-in special
34#
發(fā)表于 2025-3-27 11:04:16 | 只看該作者
35#
發(fā)表于 2025-3-27 17:09:12 | 只看該作者
Bound States in 1D,ional (ID) problems even though their usefulness becomes more evident in multi-dimensional many-body problems. To provide some insight into what it takes for a wavefunction to be an eigenfunction of a differential operator I discuss the idea of a local energy density in some detail.
36#
發(fā)表于 2025-3-27 21:44:54 | 只看該作者
Spin and Time-Dependent Processes,pin degree of freedom is added for spin-1/2 particles. A fully satisfying description of fermions is only possible in the context of relativistic QM. Nevertheless, if one accepts the construction of the Pauli equation, many relevant results can be calculated with it.
37#
發(fā)表于 2025-3-27 22:35:44 | 只看該作者
38#
發(fā)表于 2025-3-28 02:29:04 | 只看該作者
39#
發(fā)表于 2025-3-28 10:12:25 | 只看該作者
40#
發(fā)表于 2025-3-28 12:55:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 07:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
常宁市| 胶南市| 织金县| 丰宁| 连平县| 商南县| 揭东县| 延长县| 鄯善县| 图木舒克市| 宁河县| 黄大仙区| 丘北县| 河北区| 克山县| 冷水江市| 大厂| 文安县| 常州市| 合水县| 江安县| 新竹县| 陇西县| 体育| 越西县| 佳木斯市| 商丘市| 渑池县| 丰原市| 德兴市| 陆丰市| 南乐县| 鲁甸县| 南雄市| 华安县| 鹰潭市| 保山市| 教育| 苍南县| 双鸭山市| 武陟县|