找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Physics X; Proceedings of the X Konrad Schmüdgen Conference proceedings 1992 Springer-Verlag Berlin Heidelberg 1992 (Nichtkomm

[復(fù)制鏈接]
樓主: 矜持
11#
發(fā)表于 2025-3-23 10:48:10 | 只看該作者
Dynamical Zeta Functions: Where Do They Come from and What Are They Good for ?The properties and usefulness of dynamical zeta functions associated with maps and flows are discussed, and they are compared with the more traditional number-theoretic zeta functions.
12#
發(fā)表于 2025-3-23 15:17:38 | 只看該作者
13#
發(fā)表于 2025-3-23 18:01:09 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:22 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:48 | 只看該作者
Asymptotic Completeness for ,-Body Quantum SystemsWe give a sketch of a geometrical proof of asymptotic completeness for an arbitrary number of quantum particles interacting through short-range pair potentials.
16#
發(fā)表于 2025-3-24 09:49:28 | 只看該作者
17#
發(fā)表于 2025-3-24 11:31:10 | 只看該作者
18#
發(fā)表于 2025-3-24 15:16:41 | 只看該作者
19#
發(fā)表于 2025-3-24 21:13:36 | 只看該作者
Mathematical Theory of Classical Fields and General Relativitye success of Riemann’s visionary ideas in the formulation of General Relativity, have stayed away, with few notable exceptions, from the fundamental new twist given to them by Einstein who replaced the positive definite metric of Riemannian Geometry by a Lorentzian, or more appropriate, Einsteinian metric.
20#
發(fā)表于 2025-3-25 01:45:06 | 只看該作者
Hamiltonian Methods in Conformal Field Theoryl them the conformists to distinguish from die konformisten). New terminology and methodology, e.g. primary fields, vertex operators, operator expansion, mixing of states and operators is indispensable for the paper on CFT.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 20:23
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
台江县| 苍南县| 周宁县| 大理市| 凤庆县| 贺兰县| 利辛县| 宜都市| 金塔县| 浠水县| 蛟河市| 宜都市| 靖远县| 合阳县| 潮安县| 旌德县| 茶陵县| 二连浩特市| 丹寨县| 彭阳县| 吉林市| 梅州市| 包头市| 文山县| 迁西县| 红安县| 新竹县| 邹平县| 临潭县| 沾化县| 原阳县| 麻江县| 锦屏县| 思南县| 焉耆| 永清县| 辰溪县| 榆林市| 泸西县| 阿图什市| 南昌县|