找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Number Theory.; André Weil Book 19732nd edition Springer-Verlag Berlin Heidelberg 1973 Cantor.Mathematica.number theory

[復(fù)制鏈接]
樓主: Enclosure
31#
發(fā)表于 2025-3-26 22:07:12 | 只看該作者
32#
發(fā)表于 2025-3-27 03:24:10 | 只看該作者
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/b/image/181085.jpg
33#
發(fā)表于 2025-3-27 06:07:07 | 只看該作者
Basic Number Theory.978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
34#
發(fā)表于 2025-3-27 13:17:15 | 只看該作者
0072-7830 Overview: 978-3-662-05978-4Series ISSN 0072-7830 Series E-ISSN 2196-9701
35#
發(fā)表于 2025-3-27 15:21:09 | 只看該作者
Janusz Biene,Daniel Kaiser,Holger Marcks finite degree . over .. If . is an .-field and ., we must have .., .., . 2; then, by corollary 3 of prop. 4, Chap. III-3, ....(x) = x+x? and ....(x) . xx?.... maps . onto ., and .... maps .. onto .., which is a subgroup of .. of index 2.
36#
發(fā)表于 2025-3-27 20:17:46 | 只看該作者
List of Scientific and Common Names,morphic to the prime field ..=./.., with which we may identify it. Then . may be regarded as a vector-space over ..; as such, it has an obviously finite dimension ?, and the number of its elements is ... If . is a subfield of a field .; with ... elements, .; may also be regarded e.g. as a left vecto
37#
發(fā)表于 2025-3-27 23:56:45 | 只看該作者
https://doi.org/10.1007/978-1-4939-0736-6an obvious way to right vector-spaces. Only vector-spaces of finite dimension will occur; it is understood that these are always provided with their “natural topology” according to corollary 1 of th. 3, Chap. I–2. By th. 3 of Chap. I–2, every subspace of such a space . is closed in .. Taking coordin
38#
發(fā)表于 2025-3-28 02:38:35 | 只看該作者
Herrschaft - Staat - Mitbestimmunglgebraic number-fields by means of their embeddings into local fields. In the last century, however, it was discovered that the methods by which this can be done may be applied with very little change to certain fields of characteristic . >1; and the simultaneous study of these two types of fields t
39#
發(fā)表于 2025-3-28 09:45:00 | 只看該作者
40#
發(fā)表于 2025-3-28 10:51:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 07:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察哈| 福鼎市| 姚安县| 罗源县| 怀集县| 三穗县| 高要市| 景德镇市| 武安市| 天水市| 修武县| 宜川县| 环江| 清徐县| 信丰县| 重庆市| 珠海市| 南阳市| 广河县| 通辽市| 顺义区| 西乌珠穆沁旗| 宣恩县| 稻城县| 永济市| 颍上县| 通化市| 开封县| 巫山县| 江源县| 九江县| 嵊州市| 平南县| 高要市| 乌兰浩特市| 南城县| 枝江市| 津市市| 濮阳县| 那坡县| 威远县|