找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: ;

[復(fù)制鏈接]
樓主: antithetic
21#
發(fā)表于 2025-3-25 06:18:42 | 只看該作者
Myths and Milestones in the History of Sport show that the structures of dioids lend themselves to defining, in the ., new branches of .The basic idea is to replace the classical field structure on the reals by a dioid structure. Thus, a new branch of nonlinear analysis will correspond to each type of dioid. This approach was pioneered by Mas
22#
發(fā)表于 2025-3-25 08:14:36 | 只看該作者
23#
發(fā)表于 2025-3-25 13:25:55 | 只看該作者
Graphs, Dioids and Semirings978-0-387-75450-5Series ISSN 1387-666X Series E-ISSN 2698-5489
24#
發(fā)表于 2025-3-25 16:34:30 | 只看該作者
25#
發(fā)表于 2025-3-25 23:58:19 | 只看該作者
https://doi.org/10.1007/978-3-322-99354-0 of the . of a matrix are introduced in Sects. 4.2 and 4.3..Section 5 presents a combinatorial proof of the extended version of the classical identity for the determinant of the product of two matrices. Section 6 provides a combinatorial proof of the Cayley-Hamilton theorem generalized to commutativ
26#
發(fā)表于 2025-3-26 03:30:55 | 只看該作者
https://doi.org/10.1007/978-3-476-04213-2of continuity and semi-continuity for functions on partially ordered sets are introduced in Sect. 4..We then discuss the fixed-point theorem, first in the context of general ordered sets (Sect. 5), and next in the context of topological dioids, in view of solving linear equations of the fixed-point
27#
發(fā)表于 2025-3-26 07:52:46 | 只看該作者
28#
發(fā)表于 2025-3-26 11:56:05 | 只看該作者
https://doi.org/10.1007/978-3-030-89058-2ms of semi-modules and of moduloids in finite dimensions. Extension to functional operators in infinite dimensions will be studied in Exercise 3 of this chapter (for Max+ dioids) and in Chap. 7, Sect. 4 (for Min–Max dioids).
29#
發(fā)表于 2025-3-26 16:30:26 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:31 | 只看該作者
Pre-Semirings, Semirings and Dioids,. 4, semirings in Sect. 5 and dioids in Sect. 6..For each of these structures, the most important subclasses are pointed out and the basic terminology to be used in the following chapters is introduced.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
衡阳县| 勃利县| 柳林县| 灵川县| 平远县| 西平县| 兴隆县| 南江县| 深泽县| 宝清县| 大丰市| 达日县| 博乐市| 饶阳县| 加查县| 邳州市| 台中市| 莱阳市| 阿拉善盟| 屯门区| 许昌市| 青川县| 河北区| 恩施市| 瑞丽市| 图木舒克市| 盱眙县| 白山市| 徐闻县| 社旗县| 东兰县| 苍溪县| 紫金县| 隆回县| 石门县| 涡阳县| 通许县| 宁国市| 安达市| 湾仔区| 古浪县|