找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: K3 Surfaces and Their Moduli; Carel Faber,Gavril Farkas,Gerard van der Geer Book 2016 Springer International Publishing Switzerland 2016 K

[復制鏈接]
樓主: radionuclides
31#
發(fā)表于 2025-3-26 22:50:05 | 只看該作者
978-3-319-80696-9Springer International Publishing Switzerland 2016
32#
發(fā)表于 2025-3-27 04:59:04 | 只看該作者
K3 Surfaces and Their Moduli978-3-319-29959-4Series ISSN 0743-1643 Series E-ISSN 2296-505X
33#
發(fā)表于 2025-3-27 07:55:22 | 只看該作者
Orbital Counting of Curves on Algebraic Surfaces and Sphere Packings,an algebraic surface. Borrowing some results in the theory of orbit counting, we study the asymptotic of the growth of degrees of elements in the orbit of a curve on an algebraic surface with respect to a geometrically finite group of its automorphisms.
34#
發(fā)表于 2025-3-27 09:35:43 | 只看該作者
35#
發(fā)表于 2025-3-27 15:43:51 | 只看該作者
36#
發(fā)表于 2025-3-27 20:02:39 | 只看該作者
The Igusa Quartic and Borcherds Products,rphic forms of weight 6 on the Igusa quartic 3-fold which defines an ..-equivariant rational map of degree 16 from the Igusa quartic to the Segre cubic. In particular, it gives a rational self-map of the Igusa quartic of degree 16.
37#
發(fā)表于 2025-3-28 00:30:30 | 只看該作者
38#
發(fā)表于 2025-3-28 05:42:51 | 只看該作者
39#
發(fā)表于 2025-3-28 08:08:59 | 只看該作者
Geometry of Genus 8 Nikulin Surfaces and Rationality of their Moduli,n a fascinating system of relations to other known geometric families. Our aim is to unveil one of these relations, namely that occurring between the moduli of Nikulin surfaces of genus 8 and the Hilbert scheme of rational sextic curves in the Grassmannian .(1, 4). We will work over an algebraically closed field . of characteristic zero.
40#
發(fā)表于 2025-3-28 10:42:10 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-9 17:58
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
张北县| 定南县| 沽源县| 邵武市| 都江堰市| 富顺县| 冕宁县| 繁峙县| 福泉市| 于都县| 泸定县| 乡宁县| 深水埗区| 会泽县| 榕江县| 司法| 光泽县| 昌图县| 仁化县| 广元市| 北京市| 会理县| 叙永县| 潍坊市| 临颍县| 宝兴县| 民乐县| 崇信县| 新田县| 龙南县| 侯马市| 新邵县| 嘉祥县| 巴东县| 普陀区| 策勒县| 岳阳市| 大埔区| 宁安市| 渭源县| 昌邑市|