找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Algebras of Pseudodifferential Operators; B. A. Plamenevskii Book 1989 Kluwer Academic Publishers 1989 integral.manifold.mathematical phys

[復(fù)制鏈接]
查看: 52078|回復(fù): 39
樓主
發(fā)表于 2025-3-21 16:52:15 | 只看該作者 |倒序瀏覽 |閱讀模式
期刊全稱Algebras of Pseudodifferential Operators
影響因子2023B. A. Plamenevskii
視頻videohttp://file.papertrans.cn/153/152793/152793.mp4
學(xué)科分類Mathematics and its Applications
圖書封面Titlebook: Algebras of Pseudodifferential Operators;  B. A. Plamenevskii Book 1989 Kluwer Academic Publishers 1989 integral.manifold.mathematical phys
Pindex Book 1989
The information of publication is updating

書目名稱Algebras of Pseudodifferential Operators影響因子(影響力)




書目名稱Algebras of Pseudodifferential Operators影響因子(影響力)學(xué)科排名




書目名稱Algebras of Pseudodifferential Operators網(wǎng)絡(luò)公開度




書目名稱Algebras of Pseudodifferential Operators網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Algebras of Pseudodifferential Operators被引頻次




書目名稱Algebras of Pseudodifferential Operators被引頻次學(xué)科排名




書目名稱Algebras of Pseudodifferential Operators年度引用




書目名稱Algebras of Pseudodifferential Operators年度引用學(xué)科排名




書目名稱Algebras of Pseudodifferential Operators讀者反饋




書目名稱Algebras of Pseudodifferential Operators讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:51:18 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:32:02 | 只看該作者
地板
發(fā)表于 2025-3-22 07:28:02 | 只看該作者
5#
發(fā)表于 2025-3-22 09:10:21 | 只看該作者
https://doi.org/10.1007/978-3-319-90878-6In this Chapter we introduce and study the operator E(λ), which acts on the space of functions on the sphere .. It is used in all subsequent Chapters.
6#
發(fā)表于 2025-3-22 13:50:13 | 只看該作者
https://doi.org/10.1007/978-3-531-19631-2In this Chapter we consider operators of the form A = F.Ф(ξ)F., where F is the Fourier transform on ., and Ф is a positively homogeneous function of complex degree ., i.e. Ф(.) = .Ф(. for . ∈.