派博傳思國(guó)際中心

標(biāo)題: Titlebook: Visualization and Processing of Higher Order Descriptors for Multi-Valued Data; Ingrid Hotz,Thomas Schultz Conference proceedings 2015 Spr [打印本頁]

作者: Daidzein    時(shí)間: 2025-3-21 18:28
書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data影響因子(影響力)




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data影響因子(影響力)學(xué)科排名




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data網(wǎng)絡(luò)公開度




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data被引頻次




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data被引頻次學(xué)科排名




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data年度引用




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data年度引用學(xué)科排名




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data讀者反饋




書目名稱Visualization and Processing of Higher Order Descriptors for Multi-Valued Data讀者反饋學(xué)科排名





作者: Tempor    時(shí)間: 2025-3-21 23:39

作者: Curmudgeon    時(shí)間: 2025-3-22 01:42
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data978-3-319-15090-1Series ISSN 1612-3786 Series E-ISSN 2197-666X
作者: 殘忍    時(shí)間: 2025-3-22 06:58

作者: 印第安人    時(shí)間: 2025-3-22 10:14
https://doi.org/10.1007/978-3-319-15090-1diffusion-weighted imaging; image processing; interpolation; oriented data; tensor fields; ?visualization
作者: MELD    時(shí)間: 2025-3-22 14:31

作者: entail    時(shí)間: 2025-3-22 21:00
1612-3786 and theory: Applications can stimulate new basic research, .Modern imaging techniques and computational simulations yield complex multi-valued data that require higher-order mathematical descriptors. This book addresses topics of importance when dealing with such data, including frameworks for imag
作者: Processes    時(shí)間: 2025-3-23 00:48
Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetriese the corresponding orientation tensors. For a general ODF we present a systematic way of calculating the corresponding orientation tensors from certain coefficients of the expansion of the ODF in spherical harmonics.
作者: 整體    時(shí)間: 2025-3-23 04:52

作者: 得體    時(shí)間: 2025-3-23 08:19

作者: 他去就結(jié)束    時(shí)間: 2025-3-23 13:39

作者: APO    時(shí)間: 2025-3-23 16:46
A Survey of Illustrative Visualization Techniques for Diffusion-Weighted MRI Tractographyques that employ focus+context visualization, visualizations of fiber tract bundles, representations of uncertainty in the context of probabilistic fiber tracking, and techniques that rely on a spatially abstracted visualization of connectivity.
作者: 植物學(xué)    時(shí)間: 2025-3-23 18:01

作者: 大炮    時(shí)間: 2025-3-24 00:28

作者: Graduated    時(shí)間: 2025-3-24 04:01

作者: 真繁榮    時(shí)間: 2025-3-24 08:49
Diffusion-Weighted Magnetic Resonance Signal for General Gradient Waveforms: Multiple Correlation Fuh effects is immensely important for quantitative studies aiming to obtain microstructural parameters using diffusion MR acquisitions. Studies in recent years have demonstrated the potential of sophisticated gradient waveforms to provide novel information inaccessible by traditional measurements. Th
作者: nonplus    時(shí)間: 2025-3-24 13:31
Finslerian Diffusion and the Bloch–Torrey Equation is implicitly used in diffusion tensor imaging of the brain when cast into a Riemannian framework. When modeling the brain white matter as a Riemannian manifold one finds (under some provisions) that the metric tensor is proportional to the inverse of the diffusion tensor, and this opens up a range
作者: 使激動(dòng)    時(shí)間: 2025-3-24 17:44
Fiber Orientation Distribution Functions and Orientation Tensors for Different Material Symmetriesibution functions (ODF), including the well-known von Mises-Fisher, Watson, and de la Vallée Poussin ODFs. Each is characterized by a mean direction and a concentration parameter. Then, we use these elementary ODFs as building blocks to construct new ones with a specified material symmetry and deriv
作者: Amplify    時(shí)間: 2025-3-24 21:53
Topology of 3D Linear Symmetric Tensor Fieldsrch results to the most fundamental types of 3D tensor fields, i.e., linear tensor fields, and provide some novel insights on such fields. We also propose a number of hypotheses about linear tensor fields. We hope by studying linear tensor fields, we can gain more critical insights into the topology
作者: 阻擋    時(shí)間: 2025-3-25 03:14

作者: EXULT    時(shí)間: 2025-3-25 04:06

作者: 可耕種    時(shí)間: 2025-3-25 09:49

作者: esculent    時(shí)間: 2025-3-25 11:56

作者: 裁決    時(shí)間: 2025-3-25 18:30

作者: 無聊的人    時(shí)間: 2025-3-25 20:16
Visualization of Diffusion Propagator and Multiple Parameter Diffusion Signal multiple b-values, multiple orientations and multiple diffusion times. These new and demanding acquisitions go beyond classical diffusion tensor imaging (DTI) and single b-value high angular resolution diffusion imaging (HARDI) acquisitions. Recent studies show that such multiple parameter diffusio
作者: anachronistic    時(shí)間: 2025-3-26 03:31

作者: HARD    時(shí)間: 2025-3-26 04:49

作者: BIAS    時(shí)間: 2025-3-26 09:03
Visualizing Symmetric Indefinite 2D Tensor Fields Using the Heat Kernel Signaturee, and multiscale nature, it has been successfully applied in many geometric applications. From a more general point of view, the HKS can be considered as a descriptor of the metric of a Riemannian manifold. Given a symmetric positive definite tensor field we may interpret it as the metric of some R
作者: thalamus    時(shí)間: 2025-3-26 13:54
A Framework for the Analysis of Diffusion Compartment Imaging (DCI)e gained in vivo by means of diffusion-weighted imaging that is sensitive to the local patterns of diffusion of water molecules throughout the brain. Diffusion compartment imaging (DCI) provides a separate parameterization for the diffusion signal arising from each compartment of water molecules at
作者: CUMB    時(shí)間: 2025-3-26 20:28
Statistical and Machine Learning Methods for Neuroimaging: Examples, Challenges, and Extensions to Dn. In this chapter, we survey two broad families of approaches to quantitative analysis of neuroimaging data: statistical testing and machine learning. We discuss how methods developed for traditional scalar structural neuroimaging data have been extended to diffusion magnetic resonance imaging data
作者: Wernickes-area    時(shí)間: 2025-3-27 00:19
Conference proceedings 2015 addresses topics of importance when dealing with such data, including frameworks for image processing, visualization and statistical analysis of higher-order descriptors. It also provides examples of the successful use of higher-order descriptors in specific applications and a glimpse of the next g
作者: 凝視    時(shí)間: 2025-3-27 01:49
GfKl (Gesellschaft fiir Klassifikation). The conference took place at the Univer- sity of Bielefeld (Germany) in March 1999 under the title "Classification and Information Processing at the Turn of the Millennium". Researchers and practitioners - interested in data analysis, classification, and info
作者: 征兵    時(shí)間: 2025-3-27 08:38

作者: 無所不知    時(shí)間: 2025-3-27 10:13
Cem Yolcu,Evren ?zarslanensity plots are graphical techniques which map multivariate data into a two-dimensional display. The method has some elegant duality properties with ordinary Cartesian plots so that higher-dimensional mathematical structures can be analyzed. Our high interaction software allows for rapid editing of
作者: Orthodontics    時(shí)間: 2025-3-27 15:30
T. C. J. Dela Haije,A. Fuster,L. M. J. Florackat its meetings held at the International Congresses of Virology in Sendai (1984), Edmonton (1987) and Berlin (1990). This report has been organized in the same way as the previous ones (Wildy, 1971; Fenner, 1976; Matthews, 1979; 1982), yet it encompasses many more families and groups of viruses tha
作者: 阻擋    時(shí)間: 2025-3-27 17:49
Maher Moakher,Peter J. Basserum ‘Advances in vegetation science‘, which was held at tion of very large sets of reI eves and for (subsequent) table Nijmegen, The Netherlands, from 15-19 May 1979. This rearrangement (this volume as well as the book Data- symposium was organized on behalf of the Working Group Processing in Phytoso
作者: ENNUI    時(shí)間: 2025-3-28 01:07

作者: adj憂郁的    時(shí)間: 2025-3-28 06:07

作者: 修飾    時(shí)間: 2025-3-28 09:27

作者: 陶醉    時(shí)間: 2025-3-28 10:45

作者: 吼叫    時(shí)間: 2025-3-28 16:55

作者: Armada    時(shí)間: 2025-3-28 18:59

作者: Heart-Rate    時(shí)間: 2025-3-29 02:15

作者: Firefly    時(shí)間: 2025-3-29 06:19

作者: GEON    時(shí)間: 2025-3-29 08:09

作者: Feature    時(shí)間: 2025-3-29 11:42

作者: Acumen    時(shí)間: 2025-3-29 17:27
Direction-Controlled DTI Interpolationpolated ADC as a . of DTI tensors, parametrized by orientation. Any choice of a preferred direction—notably a stipulated fiber tangent—singles out a unique DTI tensor instance. Results are physically plausible and intuitive.
作者: 切掉    時(shí)間: 2025-3-29 21:59
Visualization of Diffusion Propagator and Multiple Parameter Diffusion Signal to be able to scroll in these images beyond single voxels, just as one would navigate in a whole brain map of fractional anisotropy extracted from DTI. In this chapter, we give a review of the existing visualization techniques for the local diffusion phenomenon and propose alternative visualization
作者: 側(cè)面左右    時(shí)間: 2025-3-30 03:40

作者: dendrites    時(shí)間: 2025-3-30 04:06
A Framework for the Analysis of Diffusion Compartment Imaging (DCI)ata with a focus on multi-tensor representations. This framework is based on the generalization of linear combinations of voxel values through mixture simplification. We illustrate the impact of this framework in registration, atlas construction, tractography and population studies.
作者: oracle    時(shí)間: 2025-3-30 10:49
Conference proceedings 2015y shared challenges. This book provides an interdisciplinary perspective on this topic with contributions from key researchers in disciplines ranging from visualization and image processing to applications. It is based on the 5th Dagstuhl seminar on Visualization and Processing of Higher Order Descr
作者: 護(hù)身符    時(shí)間: 2025-3-30 12:35
nd more than 100 presentations in special sections. The peer-reviewed papers are presented in 5 chapters as follows: ? Data Analysis and Classification ? Comput978-3-540-67589-1978-3-642-57280-7Series ISSN 1431-8814 Series E-ISSN 2198-3321
作者: curettage    時(shí)間: 2025-3-30 19:52
T. C. J. Dela Haije,A. Fuster,L. M. J. Floracke possible to publish such preliminary, and in some cases controversial, descriptions in the Virology Division pages of the Archives of Virology --this will all978-3-211-82286-9978-3-7091-9163-7Series ISSN 0939-1983
作者: Desert    時(shí)間: 2025-3-30 22:53
Sujal Bista,Jiachen Zhuo,Rao P. Gullapalli,Amitabh Varshneyg both specialized and interdisciplinary research and teaching, and especially of enhancing communication across communities of scholars. The classifications al978-90-481-6790-6978-1-4020-3095-6Series ISSN 1568-1300
作者: AWRY    時(shí)間: 2025-3-31 02:44

作者: 口訣法    時(shí)間: 2025-3-31 05:03

作者: 逢迎白雪    時(shí)間: 2025-3-31 11:54
Visualization and Processing of Higher Order Descriptors for Multi-Valued Data
作者: Magnitude    時(shí)間: 2025-3-31 14:04





歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
沙湾县| 溧水县| 浮山县| 安国市| 闽清县| 台东市| 吉林省| 正蓝旗| 建德市| 宿松县| 团风县| 榆中县| 来安县| 石楼县| 凤冈县| 大余县| 饶河县| 洪洞县| 荥阳市| 桃园县| 五莲县| 手游| 汝阳县| 芒康县| 闵行区| 喜德县| 通河县| 凤冈县| 浦县| 孝昌县| 柏乡县| 巴楚县| 民乐县| 昭通市| 浦江县| 依安县| 思南县| 百色市| 临清市| 措美县| 镇江市|