標(biāo)題: Titlebook: Reinforcement Learning Algorithms: Analysis and Applications; Boris Belousov,Hany Abdulsamad,Jan Peters Book 2021 The Editor(s) (if applic [打印本頁(yè)] 作者: Hayes 時(shí)間: 2025-3-21 18:48
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications影響因子(影響力)
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications影響因子(影響力)學(xué)科排名
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications網(wǎng)絡(luò)公開(kāi)度
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications網(wǎng)絡(luò)公開(kāi)度學(xué)科排名
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications被引頻次
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications被引頻次學(xué)科排名
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications年度引用
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications年度引用學(xué)科排名
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications讀者反饋
書(shū)目名稱(chēng)Reinforcement Learning Algorithms: Analysis and Applications讀者反饋學(xué)科排名
作者: Conduit 時(shí)間: 2025-3-21 22:59
A Survey on Constraining Policy Updates Using the KL Divergencehe importance of KL regularization for policy improvement is illustrated. Subsequently, the KL-regularized reinforcement learning problem is introduced and described. REPS, TRPO and PPO are derived from a single set of equations and their differences are detailed. The survey concludes with a discuss作者: Decimate 時(shí)間: 2025-3-22 03:50 作者: 忍受 時(shí)間: 2025-3-22 06:19 作者: 可商量 時(shí)間: 2025-3-22 09:10
sonders niedriges Niveau begrenzt werden.Hinzu kommen Anforderungen an die aktive und passive Sicherheit, die für jedem modernen Pkw gelten, die aber bei einem besonders kleinen und leichten Fahrzeug nicht leicht erfüllt werden k?nnen. Der Stadtverkehr tr?gt auch zur Freisetzung von fossilem Kohlens作者: DOLT 時(shí)間: 2025-3-22 15:07
Mahdi Enansonders niedriges Niveau begrenzt werden.Hinzu kommen Anforderungen an die aktive und passive Sicherheit, die für jedem modernen Pkw gelten, die aber bei einem besonders kleinen und leichten Fahrzeug nicht leicht erfüllt werden k?nnen. Der Stadtverkehr tr?gt auch zur Freisetzung von fossilem Kohlens作者: Neuropeptides 時(shí)間: 2025-3-22 20:17
Frederic Roettgersomatische Forschung von manchen ?tiologischen Vorstellungen Abschied nehmen müssen. Unter dem Zwang einer multifaktoriellen Betrachtungsweise definiere sich psychosomatische Forschung deshalb gegenw?rtig über den methodischen Zugang und nicht über die spezifische Psychogenese bestimmter Krankheiten作者: PAD416 時(shí)間: 2025-3-22 22:36 作者: Free-Radical 時(shí)間: 2025-3-23 01:39 作者: 殺蟲(chóng)劑 時(shí)間: 2025-3-23 07:28 作者: 好色 時(shí)間: 2025-3-23 13:17 作者: 辭職 時(shí)間: 2025-3-23 17:52 作者: 苦澀 時(shí)間: 2025-3-23 21:09
Fabian Scharf,Felix Helfenstein,Jonas J?gerino acid (EAA) release and overstimulation of EAA receptors mediates neuronal injury, has opened up new cytotherapeutic avenues, such as EAA receptor antagonists that would be susceptible to interrupt the cascade of cellular events leading to excitotoxic cell death..These findings led us to the assu作者: Lime石灰 時(shí)間: 2025-3-23 23:43
Jonas J?ger,Felix Helfenstein,Fabian Scharfino acid (EAA) release and overstimulation of EAA receptors mediates neuronal injury, has opened up new cytotherapeutic avenues, such as EAA receptor antagonists that would be susceptible to interrupt the cascade of cellular events leading to excitotoxic cell death..These findings led us to the assu作者: Intrepid 時(shí)間: 2025-3-24 02:32 作者: aristocracy 時(shí)間: 2025-3-24 08:43 作者: 考古學(xué) 時(shí)間: 2025-3-24 11:40
Pascal Klink(NSE) or the glial fibrillary acid protein (GFAP) and cytoskeleton constituents could be quantified. In a third step, specific investigations might be necessary, like electrophysiology or receptor binding studies..An important model to quantify neurotoxic events . identified compounds which induce p作者: 事情 時(shí)間: 2025-3-24 18:24 作者: arousal 時(shí)間: 2025-3-24 20:41
Book 2021control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications.. . The contributed papers gathered here grew out of a lecture course on reinforcement learning作者: Encoding 時(shí)間: 2025-3-24 23:48 作者: Angioplasty 時(shí)間: 2025-3-25 05:57
Persistent Homology for Dimensionality Reductionmetric properties of the data. Theoretical underpinnings of the method are presented together with computational algorithms and successful applications in various areas of machine learning. The goal of this chapter is to introduce persistent homology as a practical tool for dimensionality reduction to reinforcement learning researchers.作者: handle 時(shí)間: 2025-3-25 10:02 作者: 虛弱 時(shí)間: 2025-3-25 13:20 作者: fabricate 時(shí)間: 2025-3-25 16:26 作者: RODE 時(shí)間: 2025-3-25 21:47
Reward Function Design in Reinforcement LearningNevertheless, the mainstream of RL research in recent years has been preoccupied with the development and analysis of learning algorithms, treating the reward signal as given and not subject to change. As the learning algorithms have matured, it is now time to revisit the questions of reward functio作者: linear 時(shí)間: 2025-3-26 02:22 作者: Palpable 時(shí)間: 2025-3-26 06:09
A Survey on Constraining Policy Updates Using the KL Divergenceampled from an environment eliminates the problem of accumulating model errors that model-based methods suffer from. However, model-free methods are less sample efficient compared to their model-based counterparts and may yield unstable policy updates when the step size between successive policy upd作者: packet 時(shí)間: 2025-3-26 09:22
Fisher Information Approximations in Policy Gradient Methodson algorithms. The update direction in NPG-based algorithms is found by preconditioning the usual gradient with the inverse of the Fisher information matrix (FIM). Estimation and approximation of the FIM and FIM-vector products (FVP) are therefore of crucial importance for enabling applications of t作者: 觀點(diǎn) 時(shí)間: 2025-3-26 12:50 作者: 消滅 時(shí)間: 2025-3-26 17:09
Information-Loss-Bounded Policy Optimization as transforming the constrained TRPO problem into an unconstrained one, either via turning the constraint into a penalty or via objective clipping. In this chapter, an alternative problem reformulation is studied, where the information loss is bounded using a novel transformation of the KullbackLei作者: 現(xiàn)代 時(shí)間: 2025-3-26 21:20
Persistent Homology for Dimensionality Reductionhine learning in general and in reinforcement learning in particular. This chapter serves as an introduction and overview of .—a powerful tool for dimensionality reduction from the field of topological data analysis. Among other approaches, persistent homology explicitly tries to capture salient geo作者: 售穴 時(shí)間: 2025-3-27 01:49
Model-Free Deep Reinforcement Learning—Algorithms and Applicationscy and off-policy algorithms in the value-based and policy-based domain. Influences and possible drawbacks of different algorithmic approaches are analyzed and associated with new improvements in order to overcome previous problems. Further, the survey shows application scenarios for difficult domai作者: armistice 時(shí)間: 2025-3-27 08:50 作者: 慢跑 時(shí)間: 2025-3-27 13:22 作者: languor 時(shí)間: 2025-3-27 16:58 作者: 十字架 時(shí)間: 2025-3-27 19:56
Model-Based Reinforcement Learning from PILCO to PETS wider application of reinforcement learning. A popular algorithm called PILCO delivers on this promise by combining Gaussian process regression with policy search. However, PILCO comes at high computational costs and faces limitations in high-dimensional state-action spaces. A—at the time of writin作者: anarchist 時(shí)間: 2025-3-27 23:15 作者: Feedback 時(shí)間: 2025-3-28 05:13 作者: 滋養(yǎng) 時(shí)間: 2025-3-28 10:19 作者: Occipital-Lobe 時(shí)間: 2025-3-28 13:23
Model-Based Reinforcement Learning from PILCO to PETSy establishing connections between those—at first glance—very different algorithms. For this, we introduce a common definition of the problem which model-based reinforcement learning algorithms try to solve and then investigate follow up work on PILCO.作者: IDEAS 時(shí)間: 2025-3-28 16:00
1860-949X e field.This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is pl作者: 躲債 時(shí)間: 2025-3-28 20:19 作者: BIPED 時(shí)間: 2025-3-29 01:34
Fisher Information Approximations in Policy Gradient Methodsffline estimation methods as well as surveys more recent developments such as the expectation approximation technique based on the Kronecker-factored approximate curvature (KFAC) method and extensions thereof. The trade-offs introduced by the approximations in the context of policy gradient methods are discussed.作者: 昏睡中 時(shí)間: 2025-3-29 05:01 作者: insightful 時(shí)間: 2025-3-29 09:29
Challenges of Model Predictive Control in a Black Box Environmentg prominently discussed in the corressponding papers are crucial to the algorithm. In this paper, we review recent approaches revolving around the use of MPC for model-based RL in order to connect them to the conceptual problems that need to be tackled when using MPC in a learning scenario.作者: 放縱 時(shí)間: 2025-3-29 14:52 作者: Ruptured-Disk 時(shí)間: 2025-3-29 17:36
Model-Free Deep Reinforcement Learning—Algorithms and Applicationslyzed and associated with new improvements in order to overcome previous problems. Further, the survey shows application scenarios for difficult domains, including the game of Go, Starcraft II, Dota 2, and the Rubik’s Cube.作者: Anterior 時(shí)間: 2025-3-29 22:09
Actor vs Critic: Learning the Policy or Learning the Valuein circumstances. In this paper, we will compare these methods and identify their advantages and disadvantages. Moreover, we will illustrate the insights obtained using the examples of REINFORCE, DQN and DDPG for a better understanding. Finally, we will give brief suggestions about which approach to use under certain conditions.作者: 河潭 時(shí)間: 2025-3-30 03:14
Distributed Methods for Reinforcement Learning Surveyroaches. We introduce the general principle and problem formulation, and discuss the historical development of distributed methods. We also analyze technical challenges, such as process communication and memory requirements, and give an overview of different application areas.作者: expound 時(shí)間: 2025-3-30 07:25
er auf dem Gebiet Automotive.Includes supplementary material.Kraftfahrzeuge bestimmen wesentlich unser t?gliches Leben. Ihre Entwicklung ist eng verknüpft mit der jeweiligen wirtschaftlichen, politischen und sozialen Situation. Eine wichtige Rolle spielen die wissenschaftlichen Methoden und Erkenntn作者: 咯咯笑 時(shí)間: 2025-3-30 09:00 作者: AGONY 時(shí)間: 2025-3-30 15:07 作者: 饒舌的人 時(shí)間: 2025-3-30 17:42