派博傳思國際中心

標(biāo)題: Titlebook: Reinforcement Learning; State-of-the-Art Marco Wiering,Martijn Otterlo Book 2012 Springer-Verlag Berlin Heidelberg 2012 Artificial Intellig [打印本頁]

作者: 弄混    時間: 2025-3-21 16:55
書目名稱Reinforcement Learning影響因子(影響力)




書目名稱Reinforcement Learning影響因子(影響力)學(xué)科排名




書目名稱Reinforcement Learning網(wǎng)絡(luò)公開度




書目名稱Reinforcement Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Reinforcement Learning被引頻次




書目名稱Reinforcement Learning被引頻次學(xué)科排名




書目名稱Reinforcement Learning年度引用




書目名稱Reinforcement Learning年度引用學(xué)科排名




書目名稱Reinforcement Learning讀者反饋




書目名稱Reinforcement Learning讀者反饋學(xué)科排名





作者: Introduction    時間: 2025-3-21 21:23

作者: conduct    時間: 2025-3-22 01:07
Least-Squares Methods for Policy Iterationor the overall resulting approximate policy iteration, we provide guarantees on the performance obtained asymptotically, as the number of samples processed and iterations executed grows to infinity. We also provide finite-sample results, which apply when a finite number of samples and iterations are
作者: animated    時間: 2025-3-22 07:52
Learning and Using Modelshe types of models used in model-based methods and ways of learning them, as well as methods for planning on these models. In addition, we examine the typical architectures for combining model learning and planning, which vary depending on whether the designer wants the algorithm to run on-line, in
作者: 序曲    時間: 2025-3-22 10:01
Reinforcement Learning in Continuous State and Action Spacesblems and discuss many specific algorithms. Amongst others, we cover gradient-based temporal-difference learning, evolutionary strategies, policy-gradient algorithms and (natural) actor-critic methods. We discuss the advantages of different approaches and compare the performance of a state-of-the-ar
作者: 樣式    時間: 2025-3-22 13:27
Predictively Defined Representations of Stateal system problem, it is particularly useful in a model-based RL context, when an agent must learn a representation of state and a model of system dynamics online: because the representation (and hence all of the model’s parameters) are defined using only statistics of observable quantities, their l
作者: 擦試不掉    時間: 2025-3-22 18:19

作者: GRAZE    時間: 2025-3-22 23:48

作者: 使成整體    時間: 2025-3-23 02:45
wird. Darüber hinaus sind ihrer überzeugung nach Begabung und Pers?nlichkeit bedeutsam. Nach Darstellung der Studie und einer Interpretation der Ergebnisse werden abschlie?end Konsequenzen für eine nachhaltige Wirksamkeit des Praxissemesters mit dem Format des Forschenden Lernens diskutiert.
作者: ambivalence    時間: 2025-3-23 08:58
genen Handlungssituationen, auf die Auseinandersetzung mit Unterrichtsbeobachtungen als Reflexionsfolie für eine theoretisch gestützte Diskussion professionellen Handelns sowie auf den ebenfalls theoriegestützten Entwurf von Handlungsalternativen. Gerahmt wird die eigenst?ndige forschungsbezogene Ak
作者: maladorit    時間: 2025-3-23 12:23

作者: SHOCK    時間: 2025-3-23 17:22

作者: 搖擺    時間: 2025-3-23 20:31

作者: Interdict    時間: 2025-3-23 22:53
Lucian Bu?oniu,Alessandro Lazaric,Mohammad Ghavamzadeh,Rémi Munos,Robert Babu?ka,Bart De Schutterrd exemplarisch aufgezeigt, wie die Pluralisierung von Wissenschaft inhaltlich, methodisch und personell durch Forschendes Lernen vorangetrieben werden kann. Einblicke in das Programm ?e n t e r s c i e n c e“ veranschaulichen, inwiefern Forschendes Lernen als partizipativ angelegtes Lehr-Lern-Konze
作者: Bumble    時間: 2025-3-24 06:20
Todd Hester,Peter Stonelichkeit und Literaturdidaktik. Darauf folgt ein überblick über m?gliche Formen des Forschenden Lernens, die sich in der literaturwissenschaftlichen Lehre realisieren lassen. Beispiele aus Literaturwissenschaft und Literaturdidaktik sollen dies illustrieren. Die Ausführungen schlie?en mit einer Disk
作者: Thyroiditis    時間: 2025-3-24 07:22
Alessandro Lazaricrd exemplarisch aufgezeigt, wie die Pluralisierung von Wissenschaft inhaltlich, methodisch und personell durch Forschendes Lernen vorangetrieben werden kann. Einblicke in das Programm ?e n t e r s c i e n c e“ veranschaulichen, inwiefern Forschendes Lernen als partizipativ angelegtes Lehr-Lern-Konze
作者: 小口啜飲    時間: 2025-3-24 12:25

作者: TRAWL    時間: 2025-3-24 16:33

作者: ligature    時間: 2025-3-24 21:45
me?baren Eigenschaften registriert hatten. Dafür gibt es ein fast legend?res Beispiel, das ich in Erinnerung rufen m?chte, n?mlich die berühmte Episode der Entdeckung des Neptun. Am Beginn des letzten Jahrhunderts hatten die Astronomen festgestellt, da? die Kreisbahn des Uranus nicht voll verstande
作者: packet    時間: 2025-3-25 00:35

作者: jungle    時間: 2025-3-25 06:09
Matthijs T. J. Spaan me?baren Eigenschaften registriert hatten. Dafür gibt es ein fast legend?res Beispiel, das ich in Erinnerung rufen m?chte, n?mlich die berühmte Episode der Entdeckung des Neptun. Am Beginn des letzten Jahrhunderts hatten die Astronomen festgestellt, da? die Kreisbahn des Uranus nicht voll verstande
作者: extinguish    時間: 2025-3-25 09:08

作者: VOC    時間: 2025-3-25 15:29
Ann Nowé,Peter Vrancx,Yann-Micha?l De Hauwere me?baren Eigenschaften registriert hatten. Dafür gibt es ein fast legend?res Beispiel, das ich in Erinnerung rufen m?chte, n?mlich die berühmte Episode der Entdeckung des Neptun. Am Beginn des letzten Jahrhunderts hatten die Astronomen festgestellt, da? die Kreisbahn des Uranus nicht voll verstande
作者: 祖?zhèn)髫敭a(chǎn)    時間: 2025-3-25 18:21

作者: 培養(yǎng)    時間: 2025-3-25 23:58
Book 2012or finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade..The main goal of this book is to present an up-to-date series of survey articles on the main
作者: 不朽中國    時間: 2025-3-26 00:21

作者: 清晰    時間: 2025-3-26 05:59

作者: BRUNT    時間: 2025-3-26 09:14
Sample Complexity Bounds of Explorationo unify most existing model-based PAC-MDP algorithms for various subclasses of Markov decision processes.We also compare the sample-complexity framework to alternatives for formalizing exploration efficiency such as regret minimization and Bayes optimal solutions.
作者: JECT    時間: 2025-3-26 15:24

作者: Infirm    時間: 2025-3-26 19:10
Evolutionary Computation for Reinforcement Learninging methods for evolving neural-network topologies and weights, hybrid methods that also use temporal-difference methods, coevolutionary methods for multi-agent settings, generative and developmental systems, and methods for on-line evolutionary reinforcement learning.
作者: Synovial-Fluid    時間: 2025-3-26 22:45
Bayesian Reinforcement Learningally encoded in the prior distribution to speed up learning; b) the exploration/exploitation tradeoff can be naturally optimized; and c) notions of risk can be naturally taken into account to obtain robust policies.
作者: chalice    時間: 2025-3-27 05:02

作者: 入伍儀式    時間: 2025-3-27 06:26

作者: Femine    時間: 2025-3-27 10:58
Reinforcement Learning and Markov Decision Processesaking problems in which there is limited feedback. This text introduces the intuitions and concepts behind Markov decision processes and two classes of algorithms for computing optimal behaviors: reinforcement learning and dynamic programming. First the formal framework of Markov decision process is
作者: 玉米    時間: 2025-3-27 15:08
Batch Reinforcement Learningssible policy from a fixed set of a priori-known transition samples, the (batch) algorithms developed in this field can be easily adapted to the classical online case, where the agent interacts with the environment while learning. Due to the efficient use of collected data and the stability of the l
作者: Resign    時間: 2025-3-27 19:19
Least-Squares Methods for Policy Iteration using function approximators to represent the solution. This chapter reviews least-squares methods for policy iteration, an important class of algorithms for approximate reinforcement learning. We discuss three techniques for solving the core, policy evaluation component of policy iteration, called
作者: 愛好    時間: 2025-3-28 00:41
Learning and Using Modelsd functions of the domain on-line and plan a policy using this model. Once the method has learned an accurate model, it can plan an optimal policy on this model without any further experience in the world. Therefore, when model-based methods are able to learn a good model quickly, they frequently ha
作者: 羽飾    時間: 2025-3-28 03:18
Transfer in Reinforcement Learning: A Framework and a Surveys to a target task. Whenever the tasks are ., the transferred knowledge can be used by a learning algorithm to solve the target task and significantly improve its performance (e.g., by reducing the number of samples needed to achieve a nearly optimal performance). In this chapter we provide a formal
作者: Individual    時間: 2025-3-28 08:32
Sample Complexity Bounds of Exploration faster to near-optimal policies. While heuristics techniques are popular in practice, they lack formal guarantees and may not work well in general. This chapter studies algorithms with polynomial sample complexity of exploration, both model-based and model-free ones, in a unified manner. These so-c
作者: Anal-Canal    時間: 2025-3-28 14:23
Reinforcement Learning in Continuous State and Action Spacese problems can been difficult, due to noise and delayed reinforcements. However, many real-world problems have continuous state or action spaces, which can make learning a good decision policy even more involved. In this chapter we discuss how to automatically find good decision policies in continuo
作者: crescendo    時間: 2025-3-28 15:32

作者: 沉思的魚    時間: 2025-3-28 20:03
Hierarchical Approachestely and the results re-combined to find a solution to the original problem. It is well known that the na?ve application of reinforcement learning (RL) techniques fails to scale to more complex domains. This Chapter introduces hierarchical approaches to reinforcement learning that hold out the promi
作者: Creatinine-Test    時間: 2025-3-28 23:25

作者: 組成    時間: 2025-3-29 03:44
Bayesian Reinforcement Learning prior distribution over unknown parameters and learning is achieved by computing a posterior distribution based on the data observed. Hence, Bayesian reinforcement learning distinguishes itself from other forms of reinforcement learning by explicitly maintaining a distribution over various quantiti
作者: 用不完    時間: 2025-3-29 08:17
Partially Observable Markov Decision Processes have had many successes. In many problem domains, however, an agent suffers from limited sensing capabilities that preclude it from recovering a Markovian state signal from its perceptions. Extending the MDP framework, partially observable Markov decision processes (POMDPs) allow for principled dec
作者: 思考    時間: 2025-3-29 12:39
Predictively Defined Representations of State important information from the past into some sort of state variable. In this chapter, we start with a broad examination of the concept of state, with emphasis on the fact that there are many possible representations of state for a given dynamical system, each with different theoretical and computa
作者: Palate    時間: 2025-3-29 19:24

作者: delta-waves    時間: 2025-3-29 20:50
Decentralized POMDPsl reward based on local information only. This means that agents do not observe a Markovian signal during execution and therefore the agents’ individual policies map fromhistories to actions. Searching for an optimal joint policy is an extremely hard problem: it is NEXP-complete. This suggests, assu
作者: reception    時間: 2025-3-30 00:39
Transfer in Reinforcement Learning: A Framework and a Survey improve its performance (e.g., by reducing the number of samples needed to achieve a nearly optimal performance). In this chapter we provide a formalization of the general transfer problem, we identify the main settings which have been investigated so far, and we review the most important approaches to transfer in reinforcement learning.
作者: 閹割    時間: 2025-3-30 07:58
1867-4534 Reinforcement Learning.Includes a survey of previous papers.Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptiv
作者: 不規(guī)則的跳動    時間: 2025-3-30 09:13
trag zur professionellen Entwicklung angehender Lehrkr?fte. Die Vorstellung von Studierenden zur Relevanz einzelner Quellen dürfte die Nutzung von verschiedenen Lerngelegenheiten beeinflussen. Insofern setzt sich die Studie zum Ziel, herauszuarbeiten, welchen Stellenwert Sportstudierende mit dem Ber
作者: 生氣的邊緣    時間: 2025-3-30 16:18
okus des Beitrags auf die F?rderung von Beobachtungskompetenz. Begründet wird dieser Schwerpunkt auf drei Ebenen: als Bestandteil einer grundlegenden wissenschaftlichen Kompetenz, als Basis für p?dagogisches Handeln in einem schwach strukturierten Berufsfeld und, angesichts biographischer Hintergrün




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
萨嘎县| 徐闻县| 蓝田县| 东方市| 电白县| 临江市| 东源县| 苏州市| 高邮市| 普安县| 康平县| 昆明市| 长子县| 梁山县| 潮安县| 当雄县| 定西市| 南昌市| 五莲县| 泉州市| 封丘县| 涟源市| 越西县| 房产| 锦州市| 桐乡市| 舞钢市| 光山县| 永康市| 瓦房店市| 灵璧县| 锡林郭勒盟| 嘉鱼县| 宾川县| 平罗县| 汉源县| 萝北县| 柯坪县| 齐齐哈尔市| 临泽县| 德昌县|