派博傳思國際中心

標(biāo)題: Titlebook: Recent Advances in Reinforcement Learning; 9th European Worksho Scott Sanner,Marcus Hutter Conference proceedings 2012 Springer-Verlag Berl [打印本頁]

作者: ODDS    時(shí)間: 2025-3-21 17:29
書目名稱Recent Advances in Reinforcement Learning影響因子(影響力)




書目名稱Recent Advances in Reinforcement Learning影響因子(影響力)學(xué)科排名




書目名稱Recent Advances in Reinforcement Learning網(wǎng)絡(luò)公開度




書目名稱Recent Advances in Reinforcement Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Recent Advances in Reinforcement Learning被引頻次




書目名稱Recent Advances in Reinforcement Learning被引頻次學(xué)科排名




書目名稱Recent Advances in Reinforcement Learning年度引用




書目名稱Recent Advances in Reinforcement Learning年度引用學(xué)科排名




書目名稱Recent Advances in Reinforcement Learning讀者反饋




書目名稱Recent Advances in Reinforcement Learning讀者反饋學(xué)科排名





作者: PAEAN    時(shí)間: 2025-3-22 00:15

作者: Vsd168    時(shí)間: 2025-3-22 00:24
978-3-642-29945-2Springer-Verlag Berlin Heidelberg 2012
作者: Conquest    時(shí)間: 2025-3-22 05:51

作者: Evocative    時(shí)間: 2025-3-22 11:24
Scott Sanner,Marcus HutterFast-track conference proceedings.State-of-the-art research.Up-to-date results
作者: 來自于    時(shí)間: 2025-3-22 14:14
Handling Ambiguous Effects in Action Learningcts from transitions in which they are ambiguous. We give an unbiased, maximum likelihood approach, and show that maximally likely actions can be computed efficiently from observations. We also discuss how this study can be used to extend an RL approach for actions with independent effects to one for actions with correlated effects.
作者: 維持    時(shí)間: 2025-3-22 19:57
0302-9743 uropean Workshop on Reinforcement Learning, EWRL 2011, which took place in Athens, Greece in September 2011. The papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections online reinforcement learning, learning and exploring MDPs, functio
作者: DIKE    時(shí)間: 2025-3-22 23:55
0302-9743 cement learning, multi-agent reinforcement learning, apprenticeship and inverse reinforcement learning and real-world reinforcement learning.978-3-642-29945-2978-3-642-29946-9Series ISSN 0302-9743 Series E-ISSN 1611-3349
作者: hegemony    時(shí)間: 2025-3-23 05:16

作者: cushion    時(shí)間: 2025-3-23 07:53

作者: 補(bǔ)角    時(shí)間: 2025-3-23 12:48
?1-Penalized Projected Bellman Residualomes at the cost of a higher computational complexity if only a part of the regularization path is computed. Nevertheless, our approach ends up to a supervised learning problem, which let envision easy extensions to other penalties.
作者: Proponent    時(shí)間: 2025-3-23 14:37
Conference proceedings 2012e in September 2011. The papers presented were carefully reviewed and selected from 40 submissions. The papers are organized in topical sections online reinforcement learning, learning and exploring MDPs, function approximation methods for reinforcement learning, macro-actions in reinforcement learn
作者: Carcinoma    時(shí)間: 2025-3-23 20:35

作者: cushion    時(shí)間: 2025-3-23 22:17
Invited Talk: Increasing Representational Power and Scaling Inference in Reinforcement Learningore knowledgeable than they are today. Natural environments are composed of objects, and the possibilities to manipulate them are highly structured due to the general laws governing our relational world. All these need to be acknowledged when we want to realize thinking robots that efficiently learn
作者: FLAG    時(shí)間: 2025-3-24 04:16
Invited Talk: PRISM – Practical RL: Representation, Interaction, Synthesis, and Mortalityoven to converge in small finite domains, and then just hope for the best. This talk will advocate instead designing algorithms that adhere to the constraints, and indeed take advantage of the opportunities, that might come with the problem at hand. Drawing on several different research threads with
作者: 牌帶來    時(shí)間: 2025-3-24 08:13

作者: troponins    時(shí)間: 2025-3-24 11:10
Automatic Discovery of Ranking Formulas for Playing with Multi-armed Banditsining a grammar made of basic elements such as for example addition, subtraction, the max operator, the average values of rewards collected by an arm, their standard deviation etc., and by exploiting this grammar to generate and test a large number of formulas. The systematic search for good candida
作者: nocturnal    時(shí)間: 2025-3-24 17:17

作者: ablate    時(shí)間: 2025-3-24 20:52
Gradient Based Algorithms with Loss Functions and Kernels for Improved On-Policy Control and the other model free. These algorithms come with the possibility of having non-squared loss functions which is novel in reinforcement learning, and seems to come with empirical advantages. We further extend a previous gradient based algorithm to the case of full control, by using generalized po
作者: CRASS    時(shí)間: 2025-3-24 23:14

作者: 不安    時(shí)間: 2025-3-25 07:16

作者: ETCH    時(shí)間: 2025-3-25 09:19

作者: giggle    時(shí)間: 2025-3-25 14:12

作者: Incorporate    時(shí)間: 2025-3-25 18:30
?1-Penalized Projected Bellman Residualeast-Squares Temporal Difference (LSTD) algorithm with ?.-regularization, which has proven to be effective in the supervised learning community. This has been done recently whit the LARS-TD algorithm, which replaces the projection operator of LSTD with an ?.-penalized projection and solves the corre
作者: FELON    時(shí)間: 2025-3-25 23:06

作者: 卡死偷電    時(shí)間: 2025-3-26 02:24

作者: 上下倒置    時(shí)間: 2025-3-26 04:30

作者: Diaphragm    時(shí)間: 2025-3-26 10:37
Automatic Construction of Temporally Extended Actions for MDPs Using Bisimulation Metricsucting such actions, expressed as options [24], in a finite Markov Decision Process (MDP). To do this, we compute a bisimulation metric [7] between the states in a small MDP and the states in a large MDP, which we want to solve. The . of this metric is then used to completely define a set of options
作者: 東西    時(shí)間: 2025-3-26 15:28
Unified Inter and Intra Options Learning Using Policy Gradient Methodsge into AI systems. The options framework, as introduced in Sutton, Precup and Singh (1999), provides a natural way to incorporate macro-actions into reinforcement learning. In the subgoals approach, learning is divided into two phases, first learning each option with a prescribed subgoal, and then
作者: BRAWL    時(shí)間: 2025-3-26 18:04
Options with Exceptionsded actions thus allowing us to reuse that solution in solving larger problems. Often, it is hard to find subproblems that are exactly the same. These differences, however small, need to be accounted for in the reused policy. In this paper, the notion of options with exceptions is introduced to addr
作者: CHYME    時(shí)間: 2025-3-26 22:09
Robust Bayesian Reinforcement Learning through Tight Lower Boundses of interest, such as reinforcement learning problems. While utility bounds are known to exist for this problem, so far none of them were particularly tight. In this paper, we show how to efficiently calculate a lower bound, which corresponds to the utility of a near-optimal . policy for the decis
作者: amplitude    時(shí)間: 2025-3-27 03:11
Active Learning of MDP Modelsnt rewards to be used in the decision-making process. As computing the optimal Bayesian value function is intractable for large horizons, we use a simple algorithm to approximately solve this optimization problem. Despite the sub-optimality of this technique, we show experimentally that our proposal is efficient in a number of domains.
作者: 灌溉    時(shí)間: 2025-3-27 08:12
Recursive Least-Squares Learning with Eligibility Tracessions of FPKF and GPTD/KTD. We describe their recursive implementation, discuss their convergence properties, and illustrate their behavior experimentally. Overall, our study suggests that the state-of-art LSTD(.) [21] remains the best least-squares algorithm.
作者: 團(tuán)結(jié)    時(shí)間: 2025-3-27 09:45

作者: 極少    時(shí)間: 2025-3-27 15:14

作者: 表否定    時(shí)間: 2025-3-27 21:37
Goal-Directed Online Learning of Predictive Models efficient. Our algorithm interleaves online learning of the models, with estimation of the value function. The framework is applicable to a variety of important learning problems, including scenarios such as apprenticeship learning, model customization, and decision-making in non-stationary domains.
作者: 緩解    時(shí)間: 2025-3-27 22:29
Gradient Based Algorithms with Loss Functions and Kernels for Improved On-Policy Controlnd seems to come with empirical advantages. We further extend a previous gradient based algorithm to the case of full control, by using generalized policy iteration. Theoretical properties of these algorithms are studied in a companion paper.
作者: Gum-Disease    時(shí)間: 2025-3-28 04:22
Automatic Construction of Temporally Extended Actions for MDPs Using Bisimulation Metricse states in a small MDP and the states in a large MDP, which we want to solve. The . of this metric is then used to completely define a set of options for the large MDP. We demonstrate empirically that our approach is able to improve the speed of reinforcement learning, and is generally not sensitive to parameter tuning.
作者: Tractable    時(shí)間: 2025-3-28 07:35

作者: 約會(huì)    時(shí)間: 2025-3-28 10:55
Value Function Approximation through Sparse Bayesian Modelingl strategy is adopted. A number of experiments have been conducted on both simulated and real environments, where we took promising results in comparison with another Bayesian approach that uses Gaussian processes.
作者: FER    時(shí)間: 2025-3-28 17:18
Options with Exceptionsvelop an option representation so that small changes in the subproblem solutions can be accommodated without losing the original solution. We empirically validate the proposed framework on a simulated game domain.
作者: 用樹皮    時(shí)間: 2025-3-28 19:35
Invited Talk: UCRL and Autonomous Explorationsing the apparently closest unknown state — as indicated by an optimistic policy — for further exploration.. This is joint work with Shiau Hong Lim. The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreem
作者: Gastric    時(shí)間: 2025-3-29 00:11
Invited Talk: Increasing Representational Power and Scaling Inference in Reinforcement Learningtatistical Relational AI may give new tools for solving the “scaling challenge”. It is sometimes mentioned that scaling RL to real-world scenarios is a core challenge for robotics and AI in general. While this is true in a trivial sense, it might be beside the point. Reasoning and learning on approp
作者: 共同時(shí)代    時(shí)間: 2025-3-29 06:07

作者: intuition    時(shí)間: 2025-3-29 09:31
Automatic Discovery of Ranking Formulas for Playing with Multi-armed Bandits of this set. In particular, they clearly outperform several reference policies previously introduced in the literature. We argue that these newly found formulas as well as the procedure for generating them may suggest new directions for studying bandit problems.
作者: 忍耐    時(shí)間: 2025-3-29 11:57

作者: Infraction    時(shí)間: 2025-3-29 18:08
Unified Inter and Intra Options Learning Using Policy Gradient Methodslicy gradient algorithms may be applied. We identify the basis functions that apply to each of these decision components, and show that they possess a useful orthogonality property that allows to compute the natural gradient independently for each component. We further outline the extension of the s
作者: Facet-Joints    時(shí)間: 2025-3-29 23:45
Mauricio Araya-López,Olivier Buffet,Vincent Thomas,Fran?ois Charpillet
作者: 幼稚    時(shí)間: 2025-3-30 02:31

作者: intimate    時(shí)間: 2025-3-30 06:12
Kfir Y. Levy,Nahum Shimkinicht weiter hinterfragt. Sie m?gen evident sein, wenn man sie auf eine bestimmte Vorstellung von den reellen Zahlen bezieht. Doch mathematisch gesehen ist dies unerheblich. Diese Axiome machen keine Aussage, was die reellen Zahlen .. Sie legen nur fest, welche . sie haben. Und nur diese Eigenschafte
作者: 裙帶關(guān)系    時(shí)間: 2025-3-30 11:26
Munu Sairamesh,Balaraman Ravindraneses Integral auf Funktionen auszudehnen, die sich durch Treppenfunktionen approximieren lassen. Diese Approximation kann allerdings auf unterschiedliche Weisen erfolgen, und führt zu unterschiedlichen Integralbegriffen wie dem Cauchy-, Riemann- oder Lebesgueintegral..Wir beschr?nken uns hier auf da
作者: HAWK    時(shí)間: 2025-3-30 15:04
Christos DimitrakakisParadigma dieser Fragestellung ist das mathematische Pendel. Kleine Auslenkungen aus der unteren Ruhelage führen nur zu kleinen Pendelbewegungen um diese Ruhelage – man nennt diese Ruhelage daher .. Kleinste ?nderungen der oberen Ruhelage führen dagegen von dieser weg – man nennt sie daher ..
作者: 合唱團(tuán)    時(shí)間: 2025-3-30 19:12

作者: Heretical    時(shí)間: 2025-3-30 22:22
Munu Sairamesh,Balaraman Ravindraner Fl?chen, beispielsweise einer Ellipse? Oder die Fl?che zwischen dem Graphen einer Funktion und der Abszisse, wenn diese Funktion nicht konstant ist? Die naheliegende, bereits von Archimedes angewandte Idee ist, solche Fl?chen durch Rechteckfl?chen – deren Inhalt wir ja kennen – zu approximieren.
作者: Scleroderma    時(shí)間: 2025-3-31 01:14
Christos Dimitrakakisur durch ihre Dimension. Dies gilt nicht mehr für singul?re Punkte, die wir nun betrachten.. Ist . singul?rer Punkt von ., also .(.) = 0, so ist die konstante Kurve . die eindeutige L?sungskurve zum Anfangswert .. Modelliert das Vektorfeld ein konkretes dynamisches System, so ?ndert sich also die du
作者: VEN    時(shí)間: 2025-3-31 09:06
The Filtered Appeal: Evaluating the Impact of Appearance Enhancement on Effectiveness of Donation Refiltered video versions were not rated as less authentic than unfiltered video. Participant gender interacted with actor gender, producing mixed findings as regards the halo effect of filtered appearance enhancement.
作者: 的事物    時(shí)間: 2025-3-31 09:50
https://doi.org/10.1007/978-3-663-07712-1ndest ihre ?ffentliche Wahrnehmung ist nicht mehr zu unterdrücken und keine ?ffentliche Instanz kann mehr die Berechtigung des Gleichheitsanspruchs explizit bestreiten. Dies ist der Hintergrund der folgenden mikrosoziologischen Argumentation.
作者: 植物學(xué)    時(shí)間: 2025-3-31 16:11
Michihiro Shimada,Takayuki Kanda,Satoshi Koizumia and the current strategies employed in PCa cell lines, animal models and clinical trials for controlling these aberrant signaling pathways. The understanding of non-androgen signaling pathway target(s) in CRPC could provide novel biomarkers and newer strategies in management of metastatic PCa.
作者: FLOUR    時(shí)間: 2025-3-31 19:33

作者: Congeal    時(shí)間: 2025-3-31 22:40

作者: Offbeat    時(shí)間: 2025-4-1 05:48

作者: 原始    時(shí)間: 2025-4-1 09:51
lichen Organismus und seiner langen Geschichte als Heilmittel. Damit ist das Buch eine ausgezeichnete Erg?nzung zu den traditionellen Weinführern und eine Anleitung zum unbefangenen, aber nicht unkritischen Genu?.978-3-642-97528-8
作者: 死貓他燒焦    時(shí)間: 2025-4-1 12:53
Petros Maragos,Alexandros Potamianos,Patrick GrosEmphasis on multimodal information processing aspects of multimedia and cross-interaction of multiple modalities.Broad spectrum of novel perspectives, analytic tools, algorithms, design practices and




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
永丰县| 聂荣县| 外汇| 肇源县| 漳平市| 青龙| 增城市| 肥乡县| 邵武市| 孟州市| 兴义市| 阳东县| 玛沁县| 巴楚县| 赞皇县| 油尖旺区| 曲周县| 蒙自县| 嵩明县| 麻城市| 揭西县| 鄂州市| 寿阳县| 连山| 新邵县| 庆安县| 黄龙县| 东阳市| 陇西县| 丹阳市| 米脂县| 西华县| 右玉县| 荥经县| 满洲里市| 岳阳市| 遂溪县| 华容县| 泉州市| 临邑县| 太原市|