派博傳思國(guó)際中心

標(biāo)題: Titlebook: p-adic Hodge Theory; Bhargav Bhatt,Martin Olsson Conference proceedings 2020 The Editor(s) (if applicable) and The Author(s), under exclus [打印本頁(yè)]

作者: BID    時(shí)間: 2025-3-21 18:58
書目名稱p-adic Hodge Theory影響因子(影響力)




書目名稱p-adic Hodge Theory影響因子(影響力)學(xué)科排名




書目名稱p-adic Hodge Theory網(wǎng)絡(luò)公開度




書目名稱p-adic Hodge Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱p-adic Hodge Theory被引頻次




書目名稱p-adic Hodge Theory被引頻次學(xué)科排名




書目名稱p-adic Hodge Theory年度引用




書目名稱p-adic Hodge Theory年度引用學(xué)科排名




書目名稱p-adic Hodge Theory讀者反饋




書目名稱p-adic Hodge Theory讀者反饋學(xué)科排名





作者: CHECK    時(shí)間: 2025-3-21 22:06
Notes on the ,-Cohomology of ,We present a detailed overview of the construction of the .-cohomology theory from the preprint ., joint with Bhatt and Scholze. We focus particularly on the .-adic analogue of the Cartier isomorphism via relative de Rham–Witt complexes.
作者: FEIGN    時(shí)間: 2025-3-22 00:46
On the Cohomology of the Affine Space,We compute the .-adic geometric pro-étale cohomology of the rigid analytic affine space (in any dimension). This cohomology is non-zero, contrary to the étale cohomology, and can be described by means of differential forms.
作者: 盡責(zé)    時(shí)間: 2025-3-22 06:28

作者: harmony    時(shí)間: 2025-3-22 12:02
The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
作者: 著名    時(shí)間: 2025-3-22 13:34
p-adic Hodge Theory978-3-030-43844-9Series ISSN 2365-9564 Series E-ISSN 2365-9572
作者: mettlesome    時(shí)間: 2025-3-22 18:50
,Arithmetic Chern–Simons Theory II,tra of rings of integers in algebraic number fields. In the first three sections, we define classical Chern–Simons actions on spaces of Galois representations. In the subsequent sections, we give formulas for computation in a small class of cases and point towards some arithmetic applications.
作者: 宣誓書    時(shí)間: 2025-3-22 22:32

作者: 細(xì)菌等    時(shí)間: 2025-3-23 03:03
Kiran S. Kedlayainander, also etwa wie Perlen auf einer Schnur, angeordnet sind. Ein File ist somit eine Menge von Informationselementen mit eindeutig definiertem Anfang, definierter Reihenfolge und definiertem Ende. Unabh?ngig von der Definition eines Files ist die technische Realisierung, seine Gr??e und die Art
作者: MUMP    時(shí)間: 2025-3-23 06:26

作者: 燦爛    時(shí)間: 2025-3-23 13:05

作者: 提升    時(shí)間: 2025-3-23 16:14
2365-9564 rticles, which advance the fieldThis proceedings volume contains articles related to the research presented at the 2017 Simons Symposium on p-adic Hodge theory. This symposium was focused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connecti
作者: 表兩個(gè)    時(shí)間: 2025-3-23 18:13

作者: 繞著哥哥問    時(shí)間: 2025-3-23 23:30
Some Ring-Theoretic Properties of ,, Bhatt–Morrow–Scholze have recently reinterpreted and refined the crystalline comparison isomorphism by relating it to a certain .-valued cohomology theory. We address some basic ring-theoretic questions about ., motivated by analogies with two-dimensional regular local rings. For example, we show
作者: Supplement    時(shí)間: 2025-3-24 02:43

作者: olfction    時(shí)間: 2025-3-24 06:36

作者: Supplement    時(shí)間: 2025-3-24 11:10

作者: embolus    時(shí)間: 2025-3-24 16:12
,Sur une ,-déformation locale de la théorie de Hodge non-abélienne en caractéristique positive,gus and Vologodsky in 2005. The construction is based on the Morita-equivalence between a ring of .-twisted differential operators and its center. We also explain the expected relations between this construction and those recently done by Bhatt and Scholze. For the sake of readability, we limit ourselves to the case of dimension 1.
作者: gentle    時(shí)間: 2025-3-24 20:12
Conference proceedings 2020cused on recent developments in p-adic Hodge theory, especially those concerning integral questions and their connections to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It i
作者: 充滿裝飾    時(shí)間: 2025-3-25 02:22

作者: 自傳    時(shí)間: 2025-3-25 07:05
2365-9564 ons to notions in algebraic topology. This volume features original research articles as well as articles that contain new research and survey some of these recent developments. It is the first of three volumes dedicated to p-adic Hodge theory.978-3-030-43844-9Series ISSN 2365-9564 Series E-ISSN 2365-9572
作者: 牛的細(xì)微差別    時(shí)間: 2025-3-25 11:28
,Crystalline ,-Representations and?,-Representations with Frobenius,e .-representation of the fundamental group by constructing the associated .-representation with Frobenius, which is a variant of the construction by N.?Wach of the .-module associated to a crystalline .-representation of the absolute Galois group.
作者: 提名    時(shí)間: 2025-3-25 13:09

作者: carotenoids    時(shí)間: 2025-3-25 16:05

作者: 閑逛    時(shí)間: 2025-3-25 23:30
Michel Grosit. Der Umfang des Thesaurus wurde so gew?hlt, da? er einerseits einen im Buch noch zu vertretenden Platz einnimmt, andererseits ein Ordnungssystem für den tats?chlichen Gebrauch schon erkennen l??t. Das Thema Geb?ude wurde gew?hlt, weil Geb?ude anschaulich und in ausreichendem Ma?e allgemein bekann
作者: 天賦    時(shí)間: 2025-3-26 00:34

作者: extrovert    時(shí)間: 2025-3-26 06:00
Hee-Joong Chung,Dohyeong Kim,Minhyong Kim,Jeehoon Park,Hwajong Yoo
作者: AND    時(shí)間: 2025-3-26 09:21

作者: 不規(guī)則的跳動(dòng)    時(shí)間: 2025-3-26 13:21
Brome Mosaic Virus RNA Replication and Transcriptionuence was determined (Ahlquist et al., 1981, 1984a). (3) BMV was the first plant virus to be regenerated from transcripts derived from infectious cDNAs (Ahlquist and Janda, 1984; Ahlquist et al., 1984b).
作者: URN    時(shí)間: 2025-3-26 20:02

作者: 使混合    時(shí)間: 2025-3-27 00:43
Dirk Preu?nersrty set completely describes the input/output functional behaviour of a program. The work presents a case study showing how to use the proposed property language in order to specify an industrial implementation of a LIN (Local Interconnect Network) bus driver.
作者: 遭受    時(shí)間: 2025-3-27 02:54

作者: 六邊形    時(shí)間: 2025-3-27 08:11

作者: Bmd955    時(shí)間: 2025-3-27 12:32

作者: 猛然一拉    時(shí)間: 2025-3-27 16:01

作者: 綁架    時(shí)間: 2025-3-27 20:40





歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
宝丰县| 黔江区| 定日县| 丹江口市| 临夏县| 辉南县| 青冈县| 滦平县| 屏山县| 繁昌县| 稷山县| 府谷县| 韶山市| 凤城市| 佛冈县| 额尔古纳市| 五峰| 金华市| 麻城市| 邮箱| 宁阳县| 洱源县| 凤山市| 稷山县| 成安县| 柳河县| 科尔| 商洛市| 淳化县| 灵寿县| 大名县| 铜川市| 彭州市| 渝中区| 酉阳| 普兰县| 巴青县| 新民市| 安阳市| 衡东县| 文登市|