派博傳思國際中心

標(biāo)題: Titlebook: Optimal Control of Nonlinear Processes; With Applications in Dieter Grass,Jonathan P. Caulkins,Doris A. Behrens Book 2008 Springer-Verlag B [打印本頁]

作者: Coenzyme    時(shí)間: 2025-3-21 19:17
書目名稱Optimal Control of Nonlinear Processes影響因子(影響力)




書目名稱Optimal Control of Nonlinear Processes影響因子(影響力)學(xué)科排名




書目名稱Optimal Control of Nonlinear Processes網(wǎng)絡(luò)公開度




書目名稱Optimal Control of Nonlinear Processes網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Optimal Control of Nonlinear Processes被引頻次




書目名稱Optimal Control of Nonlinear Processes被引頻次學(xué)科排名




書目名稱Optimal Control of Nonlinear Processes年度引用




書目名稱Optimal Control of Nonlinear Processes年度引用學(xué)科排名




書目名稱Optimal Control of Nonlinear Processes讀者反饋




書目名稱Optimal Control of Nonlinear Processes讀者反饋學(xué)科排名





作者: 織布機(jī)    時(shí)間: 2025-3-21 23:17

作者: HERTZ    時(shí)間: 2025-3-22 04:02

作者: Agility    時(shí)間: 2025-3-22 06:38
Tour d’Horizon: Optimal Controlrmal proof of the Maximum Principle. Then the Maximum Principle is extended to the case of an infinite planning horizon. This is followed by the presentation of a onedimensional optimal control model, and we give an economic interpretation of the Maximum Principle.
作者: mydriatic    時(shí)間: 2025-3-22 12:14
Continuous-Time Dynamical Systemscal systems, we first provide a historical introduction, and then present the simple case of a onedimensional dynamical system, introducing important concepts in an informal manner. Subsequently we restate these concepts and the required theory in a rigorous way.
作者: 某人    時(shí)間: 2025-3-22 16:20

作者: 領(lǐng)先    時(shí)間: 2025-3-22 19:24

作者: DEI    時(shí)間: 2025-3-23 00:38
Higher-Dimensional Modelsns concern how to organize all of the components of an overall analysis. Given a particular mathematical formulation, what does one do first? What second? What does one do when one analytic strategy hits a dead end? We illustrate how to answer such questions with three innovative examples that are w
作者: Aerate    時(shí)間: 2025-3-23 04:51
Numerical Methods for Discounted Systems of Infinite Horizonh optimal control problems..Several approaches can be chosen to solve optimal control problems. The method presented here uses Pontryagin‘s Maximum Principle to establish the corresponding canonical system. In its essence, solving an optimal control problem is translated to the problem of analyzing
作者: 新鮮    時(shí)間: 2025-3-23 08:57
Extensions of the Maximum Principlehe Stackelberg concepts are introduced. Examples from the fields of corruption and terrorism are provided to illustrate the flavor of differential games..The homogeneity of economic agents is admittedly a fiction. There are several avenues to introduce heterogeneity. One of them has been discussed i
作者: 阻礙    時(shí)間: 2025-3-23 11:48

作者: Sciatica    時(shí)間: 2025-3-23 17:41
Book 2008loring models that display multiple equilibria whose basins of attraction are separated by higher-dimensional DNSS "tipping points". That rich theory is complemented by numerical methods available through a companion web site..
作者: Instinctive    時(shí)間: 2025-3-23 21:33
Introductione the methods described in this book to determine when to launch, how much fuel to carry, and how fast and how long to fire thrusters. That‘s exciting, but it‘s old news. Engineers have appreciated the power of this branch of mathematics for decades.What is news is the extent to which these methods
作者: hypotension    時(shí)間: 2025-3-24 01:57
Continuous-Time Dynamical Systemsn, in which the evolution of the states to be controlled is formulated as a differential equation. Second, and more important, the techniques for calculating and analyzing the solutions of optimal control problems, in the form in which we introduce them, profoundly rely on results provided by the th
作者: 山頂可休息    時(shí)間: 2025-3-24 05:06
Tour d’Horizon: Optimal Controle main ideas and notions. Subsequently we introduce the standard problem of optimal control theory..We state Pontryagin‘s Maximum Principle, distinguishing between the cases without and with mixed path or pure state inequality constraints. The Hamilton–Jacobi–Bellman equation is used to give an info
作者: mitten    時(shí)間: 2025-3-24 08:02

作者: Ancillary    時(shí)間: 2025-3-24 13:55

作者: sultry    時(shí)間: 2025-3-24 18:31

作者: opinionated    時(shí)間: 2025-3-24 20:40

作者: IRATE    時(shí)間: 2025-3-25 00:42

作者: aesthetic    時(shí)間: 2025-3-25 06:36

作者: peritonitis    時(shí)間: 2025-3-25 08:00

作者: overture    時(shí)間: 2025-3-25 12:17
Derivations and Proofs of Technical ResultsThis appendix summarizes technicalities and proofs which may be of interest to the reader but would have interrupted the flow of exposition in the main text.
作者: Overstate    時(shí)間: 2025-3-25 16:52

作者: GRACE    時(shí)間: 2025-3-25 21:32
https://doi.org/10.1007/978-3-540-77647-5Corruption; Counter-terror; Drug Policy; Nonlinear Processes; Optimal Control Theory; optimization
作者: 形狀    時(shí)間: 2025-3-26 03:51

作者: 暴露他抗議    時(shí)間: 2025-3-26 06:03

作者: LATE    時(shí)間: 2025-3-26 11:27
5樓
作者: hurricane    時(shí)間: 2025-3-26 15:28
5樓
作者: 支柱    時(shí)間: 2025-3-26 19:38
6樓
作者: 微枝末節(jié)    時(shí)間: 2025-3-26 22:41
6樓
作者: 進(jìn)入    時(shí)間: 2025-3-27 02:48
6樓
作者: Malfunction    時(shí)間: 2025-3-27 07:16
6樓
作者: 柏樹    時(shí)間: 2025-3-27 12:06
7樓
作者: 決定性    時(shí)間: 2025-3-27 14:58
7樓
作者: 咒語    時(shí)間: 2025-3-27 17:49
7樓
作者: 針葉樹    時(shí)間: 2025-3-27 22:18
7樓
作者: FER    時(shí)間: 2025-3-28 04:22
8樓
作者: FLAX    時(shí)間: 2025-3-28 09:42
8樓
作者: fledged    時(shí)間: 2025-3-28 12:42
8樓
作者: aggrieve    時(shí)間: 2025-3-28 16:23
8樓
作者: START    時(shí)間: 2025-3-28 19:24
9樓
作者: SMART    時(shí)間: 2025-3-29 02:06
9樓
作者: 音樂戲劇    時(shí)間: 2025-3-29 04:29
9樓
作者: ALOFT    時(shí)間: 2025-3-29 08:50
9樓
作者: CLOWN    時(shí)間: 2025-3-29 14:53
10樓
作者: 情感脆弱    時(shí)間: 2025-3-29 15:47
10樓
作者: Basal-Ganglia    時(shí)間: 2025-3-29 21:27
10樓
作者: 狼群    時(shí)間: 2025-3-30 02:04
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
晋江市| 南乐县| 五家渠市| 三江| 衡水市| 宝坻区| 济宁市| 白城市| 临朐县| 石阡县| 乌拉特后旗| 乌鲁木齐市| 石渠县| 沽源县| 黑龙江省| 济阳县| 安吉县| 平度市| 大宁县| 藁城市| 略阳县| 格尔木市| 乃东县| 余庆县| 大悟县| 巨野县| 佳木斯市| 页游| 三亚市| 青阳县| 嘉荫县| 东兰县| 长治市| 修文县| 新巴尔虎右旗| 攀枝花市| 启东市| 苍溪县| 沽源县| 栾城县| 巨鹿县|