派博傳思國際中心

標(biāo)題: Titlebook: On Thom Spectra, Orientability, and Cobordism; Yuli B. Rudyak Book 1998 Springer-Verlag Berlin Heidelberg 1998 Kobordismus mit Singularit? [打印本頁]

作者: COAX    時(shí)間: 2025-3-21 19:37
書目名稱On Thom Spectra, Orientability, and Cobordism影響因子(影響力)




書目名稱On Thom Spectra, Orientability, and Cobordism影響因子(影響力)學(xué)科排名




書目名稱On Thom Spectra, Orientability, and Cobordism網(wǎng)絡(luò)公開度




書目名稱On Thom Spectra, Orientability, and Cobordism網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱On Thom Spectra, Orientability, and Cobordism被引頻次




書目名稱On Thom Spectra, Orientability, and Cobordism被引頻次學(xué)科排名




書目名稱On Thom Spectra, Orientability, and Cobordism年度引用




書目名稱On Thom Spectra, Orientability, and Cobordism年度引用學(xué)科排名




書目名稱On Thom Spectra, Orientability, and Cobordism讀者反饋




書目名稱On Thom Spectra, Orientability, and Cobordism讀者反饋學(xué)科排名





作者: DUST    時(shí)間: 2025-3-21 22:20
Book 1998 in one place with an unified, brilliant exposition."..Zentralblatt Math 906.1999.."This book provides an excellent and thorough treatment of various topics related to cobordism. It should become an indispensable tool for advanced graduate students and workers in algebraic topology. …"..MathSciNet M
作者: 記憶    時(shí)間: 2025-3-22 03:03

作者: Self-Help-Group    時(shí)間: 2025-3-22 05:31

作者: 啞巴    時(shí)間: 2025-3-22 09:53
Complex (Co)bordism with Singularities,We fix a prime p. Let BP be the corresponding Brown–Peterson spectrum, and let . : . → . : . → . be the pair of morphisms described in VII.3.19(i).
作者: 玉米棒子    時(shí)間: 2025-3-22 14:17

作者: Crater    時(shí)間: 2025-3-22 20:14

作者: 聰明    時(shí)間: 2025-3-22 21:30

作者: 增減字母法    時(shí)間: 2025-3-23 03:11

作者: ostracize    時(shí)間: 2025-3-23 08:23

作者: lambaste    時(shí)間: 2025-3-23 10:55
Notation, Conventions and Other Preliminaries,s of algebraic topology (homotopy and homology). Typical references are: tom Dieck–Kamps–Puppe [1], tom Dieck [2], Dold [5], Fomenko–Fuchs– Gutenmacher [1], Fritsch–Piccinini [1], Fuks-Rokhlin [1], Gray [1], Hatcher [1], Hilton–Wiley [1], Hu [1], May [5], Ossa [1], Postnikov [2], Spanier [2], Switzer [1], Vick [1].
作者: 顯微鏡    時(shí)間: 2025-3-23 17:50

作者: Insubordinate    時(shí)間: 2025-3-23 19:01
K- and KO-Orientability,tiyah–Bott–Shapiro [1], the other cases were considered mainly by the author, see Rudyak [6,8,9]. To be convenient, we collect the results as a r′esum′e, see the ends of §§ 3,4. Here ., resp. ., means complex, resp. real .-theory, see Atiyah [4], Husemoller [1], Karoubi [1], etc.
作者: 會犯錯(cuò)誤    時(shí)間: 2025-3-23 22:45

作者: canonical    時(shí)間: 2025-3-24 05:19
Introduction,larities), framed by (co)homology theories and spectra. These matters have formed one of the main lines of development for the last 50 years in the area of algebraic and geometric topology. In the book I consider some results obtained in this field in the last 20–30 years, settled enough in order to
作者: vector    時(shí)間: 2025-3-24 08:08
Notation, Conventions and Other Preliminaries,s of algebraic topology (homotopy and homology). Typical references are: tom Dieck–Kamps–Puppe [1], tom Dieck [2], Dold [5], Fomenko–Fuchs– Gutenmacher [1], Fritsch–Piccinini [1], Fuks-Rokhlin [1], Gray [1], Hatcher [1], Hilton–Wiley [1], Hu [1], May [5], Ossa [1], Postnikov [2], Spanier [2], Switze
作者: Vaginismus    時(shí)間: 2025-3-24 11:26
Phantoms,om, and many other authors found phantoms later. The existence of phantoms was very exotic at that time and adorned (and adorns now, by the way) any results. However, as usual, the other tendency occurred afterwards: phantoms began to frustrate mathematicians because they appeared (or could appear)
作者: 卵石    時(shí)間: 2025-3-24 17:31

作者: 共同時(shí)代    時(shí)間: 2025-3-24 19:19
Orientability and Orientations,ll as left and right) directions. Many epochs later we had suitable concepts of the orientation of the line (arrow), the plane (circle arrow) and space (rightleft triples of vectors, spiralled arrow, etc.). Finally, in the nineteenth century a satisfactory concept of the orientation of the space . a
作者: FRAUD    時(shí)間: 2025-3-25 00:52
K- and KO-Orientability,tiyah–Bott–Shapiro [1], the other cases were considered mainly by the author, see Rudyak [6,8,9]. To be convenient, we collect the results as a r′esum′e, see the ends of §§ 3,4. Here ., resp. ., means complex, resp. real .-theory, see Atiyah [4], Husemoller [1], Karoubi [1], etc.
作者: fluoroscopy    時(shí)間: 2025-3-25 06:03
(Co)bordism with Singularities,demonstrate that (co)bordism with singularities establishes a big source of interesting (co)homology theories and, in particular, enables us to construct cohomology theories with prescribed properties (e.g., realizing certain formal groups, etc.)
作者: 土坯    時(shí)間: 2025-3-25 08:42

作者: beta-cells    時(shí)間: 2025-3-25 12:06
Introduction, Moreover, when I quote a result which I do not prove here, I quote the original paper and a monograph where this result is treated as well. There are also occasional remarks containing historical and bibliographical comments, additional results not included in the text, exercises, etc.
作者: 思想上升    時(shí)間: 2025-3-25 17:55

作者: Flavouring    時(shí)間: 2025-3-25 20:02
Thom Spectra,ered in Lewis–May–Steinberger [1]. Now it is clear that a proper theory of Thom spaces occurs in the context of sectioned spherical fibrations, and so we pay a lot of attention to sectioned fibrations; they are discussed at the beginning of the chapter.
作者: facilitate    時(shí)間: 2025-3-26 02:31
Book 1998f cobordism since R. Stong‘s encyclopaedic and influential notes of a generation ago. It concentrates on Thom spaces (spectra), orientability theory and (co)bordism theory (including (co)bordism with singularities and, in particular, Morava K-theories), framed by (co)homology theories and spectra...
作者: Affluence    時(shí)間: 2025-3-26 05:54
5樓
作者: 相容    時(shí)間: 2025-3-26 08:52
5樓
作者: 歌唱隊(duì)    時(shí)間: 2025-3-26 13:10
5樓
作者: Allowance    時(shí)間: 2025-3-26 19:00
6樓
作者: 貧困    時(shí)間: 2025-3-26 21:20
6樓
作者: 錯(cuò)    時(shí)間: 2025-3-27 02:44
6樓
作者: 媒介    時(shí)間: 2025-3-27 07:36
6樓
作者: 是突襲    時(shí)間: 2025-3-27 11:01
7樓
作者: Gourmet    時(shí)間: 2025-3-27 15:48
7樓
作者: 富饒    時(shí)間: 2025-3-27 17:50
7樓
作者: 虛度    時(shí)間: 2025-3-27 23:14
7樓
作者: 本能    時(shí)間: 2025-3-28 02:23
8樓
作者: 神刊    時(shí)間: 2025-3-28 08:39
8樓
作者: 荒唐    時(shí)間: 2025-3-28 12:16
8樓
作者: Range-Of-Motion    時(shí)間: 2025-3-28 16:57
8樓
作者: outer-ear    時(shí)間: 2025-3-28 20:34
9樓
作者: 儀式    時(shí)間: 2025-3-29 02:15
9樓
作者: Essential    時(shí)間: 2025-3-29 04:53
9樓
作者: ERUPT    時(shí)間: 2025-3-29 09:01
9樓
作者: BOOST    時(shí)間: 2025-3-29 14:12
10樓
作者: 驚奇    時(shí)間: 2025-3-29 17:53
10樓
作者: Obstreperous    時(shí)間: 2025-3-29 22:12
10樓
作者: 脖子    時(shí)間: 2025-3-30 02:24
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
绵竹市| 绥滨县| 怀宁县| 罗江县| 京山县| 新干县| 禄劝| 乳山市| 太和县| 灌阳县| 宁乡县| 都昌县| 阳城县| 咸阳市| 梧州市| 定西市| 兴业县| 怀仁县| 盐津县| 盐亭县| 三江| 如皋市| 盐源县| 庐江县| 华宁县| 杭锦旗| 确山县| 略阳县| 孙吴县| 安岳县| 崇礼县| 文登市| 抚州市| 定西市| 仲巴县| 大同县| 临泉县| 桐城市| 长海县| 巫溪县| 称多县|