派博傳思國(guó)際中心

標(biāo)題: Titlebook: Numerical Integration; Proceedings of the C G. H?mmerlin Conference proceedings 1982 Springer Basel AG 1982 [打印本頁(yè)]

作者: raff淫雨霏霏    時(shí)間: 2025-3-21 19:36
書(shū)目名稱(chēng)Numerical Integration影響因子(影響力)




書(shū)目名稱(chēng)Numerical Integration影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Numerical Integration網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Numerical Integration網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Numerical Integration被引頻次




書(shū)目名稱(chēng)Numerical Integration被引頻次學(xué)科排名




書(shū)目名稱(chēng)Numerical Integration年度引用




書(shū)目名稱(chēng)Numerical Integration年度引用學(xué)科排名




書(shū)目名稱(chēng)Numerical Integration讀者反饋




書(shū)目名稱(chēng)Numerical Integration讀者反饋學(xué)科排名





作者: 無(wú)辜    時(shí)間: 2025-3-21 21:46

作者: 配偶    時(shí)間: 2025-3-22 00:55
Duale Quadraturen,and F(x.) respectively do not appear explicitly in Q. f and Q?.f. Q.f and Q?.f are said to be dual, if these are constructed in this way. The properties of these quadrature formulae are described here.
作者: 為敵    時(shí)間: 2025-3-22 04:53
An Algorithmic Implementation of the Generalized Christoffel Theorem, distinct roots, and such that [u(t)/v(t)]dλ(t) is nonnegative on I and has finite moments of all orders, the . expresses the orthogonal polynomials relative to the measure [u(t)/v(t)]dλ(t) in determinantal form in terms of the polynomials {π.}. Assuming, for example, that m ≤ n, one has . where ..
作者: 紋章    時(shí)間: 2025-3-22 09:52

作者: bonnet    時(shí)間: 2025-3-22 15:00

作者: LARK    時(shí)間: 2025-3-22 18:07
Boolean Constructed Cubature Formulas of Interpolatory Type,t cubature formulas of interpolatory type. For these cubature formulas we determine the degree of polynomial exactness. As an application the minimum point formulas of Morrow-Patterson [8] are constructed by Boolean methods.
作者: 香料    時(shí)間: 2025-3-22 21:20

作者: Myofibrils    時(shí)間: 2025-3-23 04:00

作者: deactivate    時(shí)間: 2025-3-23 07:43

作者: watertight,    時(shí)間: 2025-3-23 11:04

作者: 稱(chēng)贊    時(shí)間: 2025-3-23 14:14

作者: PAN    時(shí)間: 2025-3-23 19:37

作者: 極力證明    時(shí)間: 2025-3-23 22:48

作者: 密碼    時(shí)間: 2025-3-24 03:02

作者: 缺陷    時(shí)間: 2025-3-24 07:23
Quadraturrest, Approximation und Chebyshev-Polynome,es and to use more robust methods. One can consider series expansions (Hilbert space, holomorphy). But there are simpler methods, employing polynomials, approximation, grids. In connection with quadrature such methods have been worked out by several authors; we mention Stroud, Locher-Zeller, Riess-J
作者: 忍受    時(shí)間: 2025-3-24 13:45

作者: Amplify    時(shí)間: 2025-3-24 14:59
Some Reflections on the Euler-Maclaurin Sum Formula,that paper the classical Euler-Maclaurin formula was analysed and generalized to give a variety of quadrature formulae in both one and more than one dimension. In the present contribution a similar approach will be made to investigate . formulae. Due to restrictions on space only the one dimensional
作者: Occlusion    時(shí)間: 2025-3-24 19:48
A Note on Cubature over a Triangle of a Function Having Specified Singularities,r. where r is the distance of (x,y) from C and x is the distance of (x,y) from AB. In particular we show how to construct rules which are exact for integrand functions p.(x,y)h.(r) where p. and h. are polynomials of degree λ and μ, respectively.
作者: 大氣層    時(shí)間: 2025-3-25 02:18

作者: 修改    時(shí)間: 2025-3-25 05:18
978-3-0348-6309-4Springer Basel AG 1982
作者: 平庸的人或物    時(shí)間: 2025-3-25 07:33
Numerical Integration978-3-0348-6308-7Series ISSN 0373-3149 Series E-ISSN 2296-6072
作者: 說(shuō)明    時(shí)間: 2025-3-25 13:52

作者: expository    時(shí)間: 2025-3-25 18:55

作者: 上漲    時(shí)間: 2025-3-25 23:29
Multidimensional Euler Summation Formulas and Numerical Cubature,s based on multidimensional generalizations of Euler summation formula. Cubature formulas are considered, estimates of the truncation error are given. The theory of Green’s (lattice) functions to elliptic differential operators and the “boundary condition” of periodicity is the main tool.
作者: 縱欲    時(shí)間: 2025-3-26 03:37
Construction of Known and New Cubature Formulas of Degree Five for Three-Dimensional Symmetric Regi ≤ 5 but not for all polynomials of degree 6. R is a region in the three-dimensional Euclidian space, assumed to be symmetric with respect to the three axes. The weight function w(x, y, z) will be assumed to be symmetric in x, y and z: w(x, y, z) = w(?x, y, z) = w(x,?y, z) = w(x, y,?z) ≤ 0
作者: 注意    時(shí)間: 2025-3-26 06:14

作者: sparse    時(shí)間: 2025-3-26 11:07

作者: 商談    時(shí)間: 2025-3-26 13:27

作者: ORBIT    時(shí)間: 2025-3-26 17:53
Expressions for Divergent Integrals in Terms of Convergent Ones,This paper considers “divergent” integrals of the type . where n is an integer, and a < z. < b. For n = 1, the above integral is commonly defined by the “Cauchy principal value”:
作者: 殘暴    時(shí)間: 2025-3-26 21:08

作者: folliculitis    時(shí)間: 2025-3-27 05:06
Optimal Quadrature of Convex Functions,At the instigation of H. Brass we consider the following question: Let us assume that for given fixed nodes a=x. 作者: 刺耳的聲音    時(shí)間: 2025-3-27 05:56
Gaussian Cubature Formulae of Degree 2 and 3,For integrals with convex domains of integration we consider cubature formulae of degree r, r∈{2, 3}, with only positive weights and all nodes inside the domain. We show, that the minimal number of nodes for such formulae varies from 3 to at least 5 (for r=2) and from 3 to at least 9 (for r=3) in dependence of the shape of the domain.
作者: 打算    時(shí)間: 2025-3-27 10:44
Gaussian Quadrature Applied to Eigenvalue Approximations,We consider the eigenvalue problem . , with K : X → X, X = L. (I), a compact integral operator. In order to obtain approximations x. resp. y. for elements of . resp.
作者: Landlocked    時(shí)間: 2025-3-27 13:40

作者: 隱士    時(shí)間: 2025-3-27 20:03
板凳
作者: 藐視    時(shí)間: 2025-3-27 22:10
第4樓
作者: 楓樹(shù)    時(shí)間: 2025-3-28 05:34
板凳
作者: 驚呼    時(shí)間: 2025-3-28 07:01
第4樓
作者: 依法逮捕    時(shí)間: 2025-3-28 12:15
第4樓
作者: Mettle    時(shí)間: 2025-3-28 17:48
5樓
作者: nauseate    時(shí)間: 2025-3-28 19:33
5樓
作者: headway    時(shí)間: 2025-3-29 00:09
5樓
作者: Nomogram    時(shí)間: 2025-3-29 04:19
5樓
作者: antidepressant    時(shí)間: 2025-3-29 07:14
6樓
作者: Hypomania    時(shí)間: 2025-3-29 13:18
6樓
作者: Spinal-Fusion    時(shí)間: 2025-3-29 18:48
6樓
作者: fleeting    時(shí)間: 2025-3-29 20:17
6樓
作者: Picks-Disease    時(shí)間: 2025-3-30 00:36
7樓
作者: 外觀    時(shí)間: 2025-3-30 04:43
7樓
作者: generic    時(shí)間: 2025-3-30 10:01
7樓
作者: 蛙鳴聲    時(shí)間: 2025-3-30 12:41
7樓
作者: Inflated    時(shí)間: 2025-3-30 20:16
8樓
作者: MOTIF    時(shí)間: 2025-3-30 21:53
8樓
作者: 香料    時(shí)間: 2025-3-31 00:56
8樓
作者: OTHER    時(shí)間: 2025-3-31 07:32
8樓
作者: BADGE    時(shí)間: 2025-3-31 11:41
9樓
作者: MAIM    時(shí)間: 2025-3-31 16:02
9樓
作者: plasma-cells    時(shí)間: 2025-3-31 20:24
9樓
作者: 步兵    時(shí)間: 2025-3-31 22:55
9樓
作者: BOAST    時(shí)間: 2025-4-1 02:15
10樓
作者: 單片眼鏡    時(shí)間: 2025-4-1 06:47
10樓
作者: Deject    時(shí)間: 2025-4-1 13:31
10樓
作者: 暗指    時(shí)間: 2025-4-1 17:50
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
京山县| 镇巴县| 延边| 汕尾市| 双城市| 攀枝花市| 德钦县| 遵化市| 嘉荫县| 石狮市| 七台河市| 洛阳市| 临邑县| 泊头市| 拜泉县| 吴江市| 保定市| 大荔县| 内乡县| 大邑县| 广元市| 突泉县| 江西省| 精河县| 鹤壁市| 太原市| 夏邑县| 鹿泉市| 会昌县| 温宿县| 卢湾区| 德清县| 那坡县| 应用必备| 启东市| 屏边| 周至县| 财经| 霍城县| 喀喇| 马龙县|