標(biāo)題: Titlebook: Numerical Integration; Proceedings of the C G. H?mmerlin Conference proceedings 1982 Springer Basel AG 1982 [打印本頁(yè)] 作者: raff淫雨霏霏 時(shí)間: 2025-3-21 19:36
書(shū)目名稱(chēng)Numerical Integration影響因子(影響力)
作者: 無(wú)辜 時(shí)間: 2025-3-21 21:46 作者: 配偶 時(shí)間: 2025-3-22 00:55
Duale Quadraturen,and F(x.) respectively do not appear explicitly in Q. f and Q?.f. Q.f and Q?.f are said to be dual, if these are constructed in this way. The properties of these quadrature formulae are described here.作者: 為敵 時(shí)間: 2025-3-22 04:53
An Algorithmic Implementation of the Generalized Christoffel Theorem, distinct roots, and such that [u(t)/v(t)]dλ(t) is nonnegative on I and has finite moments of all orders, the . expresses the orthogonal polynomials relative to the measure [u(t)/v(t)]dλ(t) in determinantal form in terms of the polynomials {π.}. Assuming, for example, that m ≤ n, one has . where ..作者: 紋章 時(shí)間: 2025-3-22 09:52 作者: bonnet 時(shí)間: 2025-3-22 15:00 作者: LARK 時(shí)間: 2025-3-22 18:07
Boolean Constructed Cubature Formulas of Interpolatory Type,t cubature formulas of interpolatory type. For these cubature formulas we determine the degree of polynomial exactness. As an application the minimum point formulas of Morrow-Patterson [8] are constructed by Boolean methods.作者: 香料 時(shí)間: 2025-3-22 21:20 作者: Myofibrils 時(shí)間: 2025-3-23 04:00 作者: deactivate 時(shí)間: 2025-3-23 07:43 作者: watertight, 時(shí)間: 2025-3-23 11:04 作者: 稱(chēng)贊 時(shí)間: 2025-3-23 14:14 作者: PAN 時(shí)間: 2025-3-23 19:37 作者: 極力證明 時(shí)間: 2025-3-23 22:48 作者: 密碼 時(shí)間: 2025-3-24 03:02 作者: 缺陷 時(shí)間: 2025-3-24 07:23
Quadraturrest, Approximation und Chebyshev-Polynome,es and to use more robust methods. One can consider series expansions (Hilbert space, holomorphy). But there are simpler methods, employing polynomials, approximation, grids. In connection with quadrature such methods have been worked out by several authors; we mention Stroud, Locher-Zeller, Riess-J作者: 忍受 時(shí)間: 2025-3-24 13:45 作者: Amplify 時(shí)間: 2025-3-24 14:59
Some Reflections on the Euler-Maclaurin Sum Formula,that paper the classical Euler-Maclaurin formula was analysed and generalized to give a variety of quadrature formulae in both one and more than one dimension. In the present contribution a similar approach will be made to investigate . formulae. Due to restrictions on space only the one dimensional作者: Occlusion 時(shí)間: 2025-3-24 19:48
A Note on Cubature over a Triangle of a Function Having Specified Singularities,r. where r is the distance of (x,y) from C and x is the distance of (x,y) from AB. In particular we show how to construct rules which are exact for integrand functions p.(x,y)h.(r) where p. and h. are polynomials of degree λ and μ, respectively.作者: 大氣層 時(shí)間: 2025-3-25 02:18 作者: 修改 時(shí)間: 2025-3-25 05:18
978-3-0348-6309-4Springer Basel AG 1982作者: 平庸的人或物 時(shí)間: 2025-3-25 07:33
Numerical Integration978-3-0348-6308-7Series ISSN 0373-3149 Series E-ISSN 2296-6072 作者: 說(shuō)明 時(shí)間: 2025-3-25 13:52 作者: expository 時(shí)間: 2025-3-25 18:55 作者: 上漲 時(shí)間: 2025-3-25 23:29
Multidimensional Euler Summation Formulas and Numerical Cubature,s based on multidimensional generalizations of Euler summation formula. Cubature formulas are considered, estimates of the truncation error are given. The theory of Green’s (lattice) functions to elliptic differential operators and the “boundary condition” of periodicity is the main tool.作者: 縱欲 時(shí)間: 2025-3-26 03:37
Construction of Known and New Cubature Formulas of Degree Five for Three-Dimensional Symmetric Regi ≤ 5 but not for all polynomials of degree 6. R is a region in the three-dimensional Euclidian space, assumed to be symmetric with respect to the three axes. The weight function w(x, y, z) will be assumed to be symmetric in x, y and z: w(x, y, z) = w(?x, y, z) = w(x,?y, z) = w(x, y,?z) ≤ 0作者: 注意 時(shí)間: 2025-3-26 06:14 作者: sparse 時(shí)間: 2025-3-26 11:07 作者: 商談 時(shí)間: 2025-3-26 13:27 作者: ORBIT 時(shí)間: 2025-3-26 17:53
Expressions for Divergent Integrals in Terms of Convergent Ones,This paper considers “divergent” integrals of the type . where n is an integer, and a < z. < b. For n = 1, the above integral is commonly defined by the “Cauchy principal value”: 作者: 殘暴 時(shí)間: 2025-3-26 21:08 作者: folliculitis 時(shí)間: 2025-3-27 05:06
Optimal Quadrature of Convex Functions,At the instigation of H. Brass we consider the following question: Let us assume that for given fixed nodes a=x.作者: 刺耳的聲音 時(shí)間: 2025-3-27 05:56
Gaussian Cubature Formulae of Degree 2 and 3,For integrals with convex domains of integration we consider cubature formulae of degree r, r∈{2, 3}, with only positive weights and all nodes inside the domain. We show, that the minimal number of nodes for such formulae varies from 3 to at least 5 (for r=2) and from 3 to at least 9 (for r=3) in dependence of the shape of the domain.作者: 打算 時(shí)間: 2025-3-27 10:44
Gaussian Quadrature Applied to Eigenvalue Approximations,We consider the eigenvalue problem . , with K : X → X, X = L. (I), a compact integral operator. In order to obtain approximations x. resp. y. for elements of . resp.作者: Landlocked 時(shí)間: 2025-3-27 13:40 作者: 隱士 時(shí)間: 2025-3-27 20:03
板凳作者: 藐視 時(shí)間: 2025-3-27 22:10
第4樓作者: 楓樹(shù) 時(shí)間: 2025-3-28 05:34
板凳作者: 驚呼 時(shí)間: 2025-3-28 07:01
第4樓作者: 依法逮捕 時(shí)間: 2025-3-28 12:15
第4樓作者: Mettle 時(shí)間: 2025-3-28 17:48
5樓作者: nauseate 時(shí)間: 2025-3-28 19:33
5樓作者: headway 時(shí)間: 2025-3-29 00:09
5樓作者: Nomogram 時(shí)間: 2025-3-29 04:19
5樓作者: antidepressant 時(shí)間: 2025-3-29 07:14
6樓作者: Hypomania 時(shí)間: 2025-3-29 13:18
6樓作者: Spinal-Fusion 時(shí)間: 2025-3-29 18:48
6樓作者: fleeting 時(shí)間: 2025-3-29 20:17
6樓作者: Picks-Disease 時(shí)間: 2025-3-30 00:36
7樓作者: 外觀 時(shí)間: 2025-3-30 04:43
7樓作者: generic 時(shí)間: 2025-3-30 10:01
7樓作者: 蛙鳴聲 時(shí)間: 2025-3-30 12:41
7樓作者: Inflated 時(shí)間: 2025-3-30 20:16
8樓作者: MOTIF 時(shí)間: 2025-3-30 21:53
8樓作者: 香料 時(shí)間: 2025-3-31 00:56
8樓作者: OTHER 時(shí)間: 2025-3-31 07:32
8樓作者: BADGE 時(shí)間: 2025-3-31 11:41
9樓作者: MAIM 時(shí)間: 2025-3-31 16:02
9樓作者: plasma-cells 時(shí)間: 2025-3-31 20:24
9樓作者: 步兵 時(shí)間: 2025-3-31 22:55
9樓作者: BOAST 時(shí)間: 2025-4-1 02:15
10樓作者: 單片眼鏡 時(shí)間: 2025-4-1 06:47
10樓作者: Deject 時(shí)間: 2025-4-1 13:31
10樓作者: 暗指 時(shí)間: 2025-4-1 17:50
10樓