作者: 確定無(wú)疑 時(shí)間: 2025-3-21 21:03
Numerical Fourier Analysis978-3-031-35005-4Series ISSN 2296-5009 Series E-ISSN 2296-5017 作者: 卡死偷電 時(shí)間: 2025-3-22 02:18 作者: 執(zhí) 時(shí)間: 2025-3-22 05:28 作者: hyperuricemia 時(shí)間: 2025-3-22 10:24
Numerical Applications of DFT,This chapter addresses numerical applications of DFTs. In Sect. 9.1, we describe a powerful multidimensional approximation method, the so-called cardinal interpolation by translates . with ., where . is a compactly supported, continuous function.作者: 笨拙處理 時(shí)間: 2025-3-22 13:38 作者: Crepitus 時(shí)間: 2025-3-22 20:13 作者: faucet 時(shí)間: 2025-3-22 22:38
https://doi.org/10.1007/978-3-031-35005-4Numerical Fourier Analysis; Discrete Fourier Transforms; Fast Fourier Transforms; Multidimensional Four作者: 簡(jiǎn)潔 時(shí)間: 2025-3-23 01:39 作者: 砍伐 時(shí)間: 2025-3-23 08:58 作者: ascend 時(shí)間: 2025-3-23 10:08 作者: Insufficient 時(shí)間: 2025-3-23 15:59 作者: DEAWL 時(shí)間: 2025-3-23 18:22
Gerlind Plonka,Daniel Potts,Gabriele Steidl,Manfred Tasche作者: Debrief 時(shí)間: 2025-3-24 02:12
Gerlind Plonka,Daniel Potts,Gabriele Steidl,Manfred Tasche作者: 使高興 時(shí)間: 2025-3-24 06:01 作者: muffler 時(shí)間: 2025-3-24 07:51
Gerlind Plonka,Daniel Potts,Gabriele Steidl,Manfred Tasche作者: 寵愛 時(shí)間: 2025-3-24 10:55
Gerlind Plonka,Daniel Potts,Gabriele Steidl,Manfred Tasche作者: SKIFF 時(shí)間: 2025-3-24 15:02 作者: jet-lag 時(shí)間: 2025-3-24 22:31 作者: 點(diǎn)燃 時(shí)間: 2025-3-25 03:05
Gerlind Plonka,Daniel Potts,Gabriele Steidl,Manfred Tasche作者: 哭得清醒了 時(shí)間: 2025-3-25 04:48
Gerlind Plonka,Daniel Potts,Gabriele Steidl,Manfred Tasche作者: 放牧 時(shí)間: 2025-3-25 08:22 作者: Affluence 時(shí)間: 2025-3-25 14:59 作者: Anticlimax 時(shí)間: 2025-3-25 19:48
Book 2023Latest edition-dimensional FFTs on special lattices, and sparse FFTs.? An additional chapter is devoted to discrete trigonometric transforms and Chebyshev expansions.? The final two chapters consider various applications of numerical Fourier methods for improved function approximation, including Prony methods for作者: 聯(lián)合 時(shí)間: 2025-3-25 23:47 作者: 懶鬼才會(huì)衰弱 時(shí)間: 2025-3-26 02:38 作者: misshapen 時(shí)間: 2025-3-26 06:19
2296-5009 in numerical Fourier analysis.Explores application in signaNew technological innovations and advances in research in areas such as spectroscopy, computer tomography, signal processing, and data analysis require a deep understanding of function approximation using Fourier methods.? To address this g作者: Bph773 時(shí)間: 2025-3-26 10:42 作者: jarring 時(shí)間: 2025-3-26 13:43 作者: 雄偉 時(shí)間: 2025-3-26 20:36
Fourier Transform,ned on the Banach space .. The main properties of the Fourier transform are handled, such as the Fourier inversion formula and the convolution property. Then, in Sect. 2.2, the Fourier transform is introduced as a bijective mapping of the Hilbert space . onto itself by the theorem of Plancherel. The作者: semble 時(shí)間: 2025-3-26 21:11
Discrete Fourier Transforms,ation of Fourier coefficients, Fourier transforms, or trigonometric interpolation, lead to the DFT. We also present barycentric formulas for interpolating trigonometric polynomials. In Sect. 3.2, we study the basic properties of the Fourier matrix and of the DFT. In particular, we consider the eigen作者: acrobat 時(shí)間: 2025-3-27 04:28
Fast Fourier Transforms, computation of DFT. is very important. Therefore this chapter treats fast Fourier transforms. A . (FFT) is an algorithm for computing the DFT. which needs only a relatively low number of arithmetic operations.作者: 價(jià)值在貶值 時(shí)間: 2025-3-27 05:39 作者: irreparable 時(shí)間: 2025-3-27 13:27 作者: humectant 時(shí)間: 2025-3-27 16:38
7樓作者: GNAW 時(shí)間: 2025-3-27 20:49
7樓作者: 厭煩 時(shí)間: 2025-3-28 00:26
7樓作者: NEEDY 時(shí)間: 2025-3-28 04:26
7樓作者: acrophobia 時(shí)間: 2025-3-28 09:54
8樓作者: RUPT 時(shí)間: 2025-3-28 12:24
8樓作者: 潛伏期 時(shí)間: 2025-3-28 15:28
8樓作者: 1分開 時(shí)間: 2025-3-28 20:10
8樓作者: 攤位 時(shí)間: 2025-3-29 01:25
9樓作者: FISC 時(shí)間: 2025-3-29 04:47
9樓作者: spondylosis 時(shí)間: 2025-3-29 07:34
9樓作者: 青石板 時(shí)間: 2025-3-29 13:17
9樓作者: 記成螞蟻 時(shí)間: 2025-3-29 16:37
10樓作者: Traumatic-Grief 時(shí)間: 2025-3-29 22:00
10樓作者: –DOX 時(shí)間: 2025-3-30 03:30
10樓作者: obviate 時(shí)間: 2025-3-30 07:05
10樓