標(biāo)題: Titlebook: Number Theory and Discrete Mathematics; A. K. Agarwal,Bruce C. Berndt,Michel Waldschmidt Book 2002 Hindustan Book Agency (India) 2002 [打印本頁] 作者: tricuspid-valve 時(shí)間: 2025-3-21 16:06
書目名稱Number Theory and Discrete Mathematics影響因子(影響力)
書目名稱Number Theory and Discrete Mathematics影響因子(影響力)學(xué)科排名
書目名稱Number Theory and Discrete Mathematics網(wǎng)絡(luò)公開度
書目名稱Number Theory and Discrete Mathematics網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Number Theory and Discrete Mathematics被引頻次
書目名稱Number Theory and Discrete Mathematics被引頻次學(xué)科排名
書目名稱Number Theory and Discrete Mathematics年度引用
書目名稱Number Theory and Discrete Mathematics年度引用學(xué)科排名
書目名稱Number Theory and Discrete Mathematics讀者反饋
書目名稱Number Theory and Discrete Mathematics讀者反饋學(xué)科排名
作者: Debate 時(shí)間: 2025-3-21 20:34
Overview: 978-93-86279-10-1作者: compose 時(shí)間: 2025-3-22 01:42 作者: Ventilator 時(shí)間: 2025-3-22 08:21
A (Conjectural) 1/3-phenomenon for the Number of Rhombus Tilings of a Hexagon which Contain a Fixedth side lengths 2. + ., 2. + ., 2. + ., 2. + ., 2. + ., 2. + . contains the (horizontal) rhombus with coordinates (2. + ., 2. + .) is equal to ., where .(.) is a rational function in .. Several specific instances of this “1/3-phenomenon” are made explicit.作者: 他日關(guān)稅重重 時(shí)間: 2025-3-22 11:50
,Observations on Some Algebraic Equations Associated with Ramanujan’s Work,., which he solved by radicals, and the Diophantine equation . + . + . = 1, which appears in ., along with an astonishing solution. It is shown that, in general, the equation with 5 iterated square roots cannot be solved by radicals and that the Diophantine equation has solutions not previously quoted.作者: metropolitan 時(shí)間: 2025-3-22 14:35
A Note on Cordial Labelings of Multiple Shells,he number of vertices . with .(.) = 0 and .(.) = 1 respectively. Let .(0), .(1) be similarly defined. A graph is said to be . if there exists a vertex labeling . such that |.(0) ? .(1)| ≤ 1 and |.(0) ? .(1)| ≤ 1. In this paper, we show that every multiple shell . is cordial for all positive integers ., …, ., ., …, ..作者: saphenous-vein 時(shí)間: 2025-3-22 20:15 作者: Thyroid-Gland 時(shí)間: 2025-3-22 23:47
,Little Flowers to G.H. Hardy (07-02-1877–01-12-1947),Honouring Ramanujan is not complete without honouring G.H. Hardy who collaborated with him in an epoch-making way and brought his contributions to the lime light of the world. In this small article I list a few results of mine and offer it to G.H. Hardy as little flowers.作者: 高談闊論 時(shí)間: 2025-3-23 04:42 作者: LIMIT 時(shí)間: 2025-3-23 05:36 作者: intricacy 時(shí)間: 2025-3-23 09:56 作者: 職業(yè)拳擊手 時(shí)間: 2025-3-23 15:05 作者: 真實(shí)的你 時(shí)間: 2025-3-23 19:26
,Integrity of , × ,The vertex Integrity, .(.), of a graph . is defined as. where .(. ? .) is the order of the largest component of . ? .. In this paper, we compute .(. × .), the vertex integrity of the Cartesian product of . and ..作者: 自戀 時(shí)間: 2025-3-23 22:21 作者: 幻影 時(shí)間: 2025-3-24 05:22
Transcendental Infinite Sums and Some Related Questions,Erd?s and Chowla put forward some questions regarding non-vanishing of certain infinite sums. In this article, we present an expository account of results obtained in that direction. These include some interesting results of Baker, Birch and Wirsing and some recent work of the present author jointly with Saradha, Shorey and Tijdeman.作者: grounded 時(shí)間: 2025-3-24 07:47 作者: NOT 時(shí)間: 2025-3-24 14:14
The Problems Solved by Ramanujan in the Journal of the Indian Mathematical Society,Between 1912 and 1914, eight solutions by Ramanujan to questions posed in the . were published. Since these solutions have not heretofore appeared elsewhere, and since some of these problems evidently motivated certain entries in his notebooks [6], in this paper, we present all eight problems and solutions and provide some commentary on them.作者: Reverie 時(shí)間: 2025-3-24 16:45 作者: vasospasm 時(shí)間: 2025-3-24 19:11
Multiple Polylogarithms: An Introduction,this is the classical polylogarithm Li. (.). These multiple polylogarithms can be defined also in terms of iterated Chen integrals and satisfy .. Multiple polylogarithms in several variables are defined for . ≥ 1 and |.| < 1(1 ≤ . ≤ .) by., and they satisfy not only shuffle relations, but also .. Wh作者: cruise 時(shí)間: 2025-3-25 02:42
A (Conjectural) 1/3-phenomenon for the Number of Rhombus Tilings of a Hexagon which Contain a Fixedth side lengths 2. + ., 2. + ., 2. + ., 2. + ., 2. + ., 2. + . contains the (horizontal) rhombus with coordinates (2. + ., 2. + .) is equal to ., where .(.) is a rational function in .. Several specific instances of this “1/3-phenomenon” are made explicit.作者: corpus-callosum 時(shí)間: 2025-3-25 06:45 作者: Instantaneous 時(shí)間: 2025-3-25 08:37
,Rogers-Ramanujan Type Identities for Burge’s Restricted Partition Pairs Via Restricted Frobenius Pao establish a connection between three particular cases of these restricted Frobenius partition functions and Burge’s restricted partition pairs (J. Combin. Theory Ser. A, 63, 1993, 210–222). This connection and Burge’s Theorem 1 give us three new analytic identities. A comparison of these analytic 作者: GEN 時(shí)間: 2025-3-25 13:23 作者: Comedienne 時(shí)間: 2025-3-25 18:04 作者: apiary 時(shí)間: 2025-3-25 23:59
A Note on Cordial Labelings of Multiple Shells,he number of vertices . with .(.) = 0 and .(.) = 1 respectively. Let .(0), .(1) be similarly defined. A graph is said to be . if there exists a vertex labeling . such that |.(0) ? .(1)| ≤ 1 and |.(0) ? .(1)| ≤ 1. In this paper, we show that every multiple shell . is cordial for all positive integers作者: TATE 時(shí)間: 2025-3-26 02:36 作者: 妨礙議事 時(shí)間: 2025-3-26 05:23 作者: insert 時(shí)間: 2025-3-26 09:22 作者: 的事物 時(shí)間: 2025-3-26 14:05
第4樓作者: 駕駛 時(shí)間: 2025-3-26 18:41
板凳作者: 污點(diǎn) 時(shí)間: 2025-3-26 22:29
第4樓作者: 得意牛 時(shí)間: 2025-3-27 02:08
板凳作者: overshadow 時(shí)間: 2025-3-27 09:15
板凳作者: 大火 時(shí)間: 2025-3-27 10:56
第4樓作者: 戰(zhàn)勝 時(shí)間: 2025-3-27 14:41
板凳作者: 耐寒 時(shí)間: 2025-3-27 21:07
第4樓作者: obviate 時(shí)間: 2025-3-28 01:16
板凳作者: majestic 時(shí)間: 2025-3-28 03:42
板凳作者: 尾隨 時(shí)間: 2025-3-28 09:19
第4樓作者: 拔出 時(shí)間: 2025-3-28 11:13
板凳作者: glacial 時(shí)間: 2025-3-28 16:41
第4樓作者: 凹槽 時(shí)間: 2025-3-28 21:46
第4樓作者: 假設(shè) 時(shí)間: 2025-3-29 02:34
5樓作者: 步履蹣跚 時(shí)間: 2025-3-29 06:43
5樓作者: CLIFF 時(shí)間: 2025-3-29 10:48
5樓作者: menopause 時(shí)間: 2025-3-29 11:45
5樓作者: lanugo 時(shí)間: 2025-3-29 17:13
6樓作者: GAVEL 時(shí)間: 2025-3-29 22:53
6樓作者: Melanoma 時(shí)間: 2025-3-30 00:28
6樓作者: 蓋他為秘密 時(shí)間: 2025-3-30 04:24
6樓作者: Phonophobia 時(shí)間: 2025-3-30 09:29
7樓作者: 浮雕寶石 時(shí)間: 2025-3-30 13:01
7樓作者: crease 時(shí)間: 2025-3-30 17:44
7樓作者: 痛苦一生 時(shí)間: 2025-3-30 23:54
7樓作者: glamor 時(shí)間: 2025-3-31 04:43
8樓作者: 磨坊 時(shí)間: 2025-3-31 07:19
8樓作者: 胖人手藝好 時(shí)間: 2025-3-31 11:33
8樓作者: IRK 時(shí)間: 2025-3-31 15:00
8樓作者: intrigue 時(shí)間: 2025-3-31 18:41
9樓作者: FEIGN 時(shí)間: 2025-4-1 00:01
9樓作者: 鑲嵌細(xì)工 時(shí)間: 2025-4-1 04:16
9樓作者: MILL 時(shí)間: 2025-4-1 06:52
9樓作者: GUISE 時(shí)間: 2025-4-1 10:24
10樓作者: Trigger-Point 時(shí)間: 2025-4-1 16:37
10樓作者: 有偏見 時(shí)間: 2025-4-1 21:37
10樓作者: Meditative 時(shí)間: 2025-4-2 02:10
10樓