標題: Titlebook: Notes on Tug-of-War Games and the p-Laplace Equation; Mikko Parviainen Book 2024 The Editor(s) (if applicable) and The Author(s), under ex [打印本頁] 作者: sulfonylureas 時間: 2025-3-21 17:28
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation影響因子(影響力)
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation影響因子(影響力)學(xué)科排名
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation網(wǎng)絡(luò)公開度
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation被引頻次
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation被引頻次學(xué)科排名
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation年度引用
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation年度引用學(xué)科排名
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation讀者反饋
書目名稱Notes on Tug-of-War Games and the p-Laplace Equation讀者反饋學(xué)科排名
作者: legacy 時間: 2025-3-21 23:27
https://doi.org/10.1007/978-981-99-7879-3dynamic programming principle; equations in non-divergence form; normalized or game theoretic p-Laplac作者: ULCER 時間: 2025-3-22 01:35
Mikko Parviainenprovides a detailed and accessible introduction to the subject and to the more research-oriented literature.presents illustrative examples and images to help readers understand the key ideas.introduce作者: 一個攪動不安 時間: 2025-3-22 07:31
Introduction,inear potential theory and the corresponding probability theory. The connection between harmonic functions, the mean value property, and the expected value of a random walk is further illustrated in the examples. Such a connection appears to require linearity, but the approach turns out to be useful in the nonlinear theory as well.作者: LAIR 時間: 2025-3-22 10:49 作者: 小故事 時間: 2025-3-22 14:36
Stochastic Tug-of-War Games,Next we start looking at the connection between stochastic processes and PDEs more closely.作者: allergy 時間: 2025-3-22 19:50
Cancellation Method for Regularity of the Tug-of-War with Noise,In this section, we show that a value function for the tug-of-war with noise is (asymptotically) locally Lipschitz continuous.作者: glucagon 時間: 2025-3-22 23:20 作者: locus-ceruleus 時間: 2025-3-23 01:27
Further Regularity Methods,We already saw the cancellation method in Chap. . for the asymptotic Lipschitz regularity of value functions. It is a nontrivial task to extend that method to a more general class of problems where the sharp cancellation used in the proof breaks down. In this section, we review some regularity methods applicable with more general assumptions.作者: 惰性氣體 時間: 2025-3-23 07:59
Open Problems and Comments,In this section we state some open problems.作者: 演講 時間: 2025-3-23 13:02
978-981-99-7878-6The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor作者: Conspiracy 時間: 2025-3-23 14:48
Notes on Tug-of-War Games and the p-Laplace Equation978-981-99-7879-3Series ISSN 2731-7595 Series E-ISSN 2731-7609 作者: Gudgeon 時間: 2025-3-23 20:43 作者: milligram 時間: 2025-3-24 02:16
Notes on Tug-of-War Games and the p-Laplace Equation作者: idiopathic 時間: 2025-3-24 04:05
Mikko Parviainener cases the additional evidence may be available only for one country, or only for one sector. In several cases, because of data availability, more additional evidence is available for Ghana than for Burkina Faso.作者: Acetaldehyde 時間: 2025-3-24 08:53
Book 2024tween the nonlinear p-Laplace equation and the stochastic game called tug-of-war with noise. The connection in this context was discovered approximately 15 years ago and has since provided new insights and approaches. These lecture notes provide a brief but detailed and accessible introduction to th作者: 反抗者 時間: 2025-3-24 14:02 作者: Melanocytes 時間: 2025-3-24 16:51 作者: 王得到 時間: 2025-3-24 21:38 作者: Limousine 時間: 2025-3-25 00:05 作者: Virtues 時間: 2025-3-25 04:32
6樓作者: visual-cortex 時間: 2025-3-25 09:30
7樓作者: hypertension 時間: 2025-3-25 13:01
7樓作者: 山頂可休息 時間: 2025-3-25 18:42
7樓作者: motor-unit 時間: 2025-3-25 23:03
7樓作者: ENACT 時間: 2025-3-26 03:26
8樓作者: 通知 時間: 2025-3-26 05:13
8樓作者: PALMY 時間: 2025-3-26 11:15
8樓作者: 光明正大 時間: 2025-3-26 14:43
8樓作者: 加劇 時間: 2025-3-26 19:38
9樓作者: 卷發(fā) 時間: 2025-3-26 21:27
9樓作者: NOT 時間: 2025-3-27 04:06
9樓作者: Synthesize 時間: 2025-3-27 08:51
9樓作者: 中世紀 時間: 2025-3-27 10:47
10樓作者: absolve 時間: 2025-3-27 13:47
10樓作者: 敘述 時間: 2025-3-27 20:22
10樓作者: Cantankerous 時間: 2025-3-27 23:41
10樓