派博傳思國(guó)際中心

標(biāo)題: Titlebook: Nonlinear Functional Analysis; A First Course S. Kesavan Book 2004 Hindustan Book Agency 2004 [打印本頁(yè)]

作者: 衰退    時(shí)間: 2025-3-21 18:28
書目名稱Nonlinear Functional Analysis影響因子(影響力)




書目名稱Nonlinear Functional Analysis影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Functional Analysis網(wǎng)絡(luò)公開度




書目名稱Nonlinear Functional Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Functional Analysis被引頻次




書目名稱Nonlinear Functional Analysis被引頻次學(xué)科排名




書目名稱Nonlinear Functional Analysis年度引用




書目名稱Nonlinear Functional Analysis年度引用學(xué)科排名




書目名稱Nonlinear Functional Analysis讀者反饋




書目名稱Nonlinear Functional Analysis讀者反饋學(xué)科排名





作者: 流出    時(shí)間: 2025-3-21 21:37

作者: 過(guò)度    時(shí)間: 2025-3-22 01:11

作者: Abjure    時(shí)間: 2025-3-22 06:50
The Brouwer Degree,The topological degree is a useful tool in the study of existence of solutions to nonlinear equations. In this chapter, we will study the finite dimensional version of the degree, known as the Brouwer degree.
作者: 漂浮    時(shí)間: 2025-3-22 11:41
The Leray - Schauder Degree,Let . be a (real) Banach space. Henceforth, unless otherwise stated, all mappings of . into itself, or any other space, will be assumed to be continuous and mapping bounded sets into bounded sets.
作者: FACET    時(shí)間: 2025-3-22 13:21
Critical Points of Functionals,In the last section of the preceding chapter, we have already seen examples of how solutions to certain nonlinear equations could be obtained as critical points of appropriate functionals.
作者: 小母馬    時(shí)間: 2025-3-22 18:50
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/667511.jpg
作者: CBC471    時(shí)間: 2025-3-23 00:27
done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th
作者: Hyperopia    時(shí)間: 2025-3-23 02:41
S. Kesavan done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th
作者: outrage    時(shí)間: 2025-3-23 06:53

作者: 中國(guó)紀(jì)念碑    時(shí)間: 2025-3-23 11:55
Bifurcation Theory,o be answered satisfactorily, even when the spaces . and . are finite dimensional. Very often, we are led to study nonlinear equations dependent on a parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above e
作者: Nonporous    時(shí)間: 2025-3-23 17:12
Bifurcation Theory,parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above equation to possess a ‘nice’ family of solutions (often called the trivial solutions). However, for certain values of λ, new solutions may appear and hence we use the term ‘bifurcation’.
作者: 規(guī)章    時(shí)間: 2025-3-23 18:59

作者: invulnerable    時(shí)間: 2025-3-24 01:28

作者: oracle    時(shí)間: 2025-3-24 03:08

作者: 航海太平洋    時(shí)間: 2025-3-24 09:41
5樓
作者: 聯(lián)想記憶    時(shí)間: 2025-3-24 13:37
6樓
作者: 鄙視    時(shí)間: 2025-3-24 14:49
6樓
作者: consent    時(shí)間: 2025-3-24 22:25
6樓
作者: 委屈    時(shí)間: 2025-3-25 00:09
6樓
作者: 束縛    時(shí)間: 2025-3-25 05:46
7樓
作者: 浮雕    時(shí)間: 2025-3-25 08:41
7樓
作者: STYX    時(shí)間: 2025-3-25 15:04
7樓
作者: 歪曲道理    時(shí)間: 2025-3-25 16:54
7樓
作者: 圖畫文字    時(shí)間: 2025-3-25 21:23
8樓
作者: exophthalmos    時(shí)間: 2025-3-26 00:44
8樓
作者: 小隔間    時(shí)間: 2025-3-26 06:58
8樓
作者: 有特色    時(shí)間: 2025-3-26 10:51
8樓
作者: Urea508    時(shí)間: 2025-3-26 12:40
9樓
作者: 人造    時(shí)間: 2025-3-26 17:32
9樓
作者: 莎草    時(shí)間: 2025-3-27 00:20
9樓
作者: 嘲笑    時(shí)間: 2025-3-27 02:03
9樓
作者: 大漩渦    時(shí)間: 2025-3-27 07:27
10樓
作者: Modicum    時(shí)間: 2025-3-27 13:29
10樓
作者: 工作    時(shí)間: 2025-3-27 16:12
10樓
作者: 厚顏    時(shí)間: 2025-3-27 18:58
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
自治县| 项城市| 广元市| 神池县| 定安县| 金堂县| 淳安县| 汽车| 驻马店市| 缙云县| 堆龙德庆县| 宜城市| 嘉荫县| 从江县| 白山市| 武穴市| 鲜城| 瑞金市| 镇巴县| 鹤岗市| 三门峡市| 皋兰县| 长海县| 当涂县| 南川市| 广宗县| 淮安市| 西昌市| 丘北县| 墨竹工卡县| 南通市| 公安县| 皋兰县| 长武县| 朝阳区| 两当县| 舒兰市| 汤原县| 郑州市| 泗水县| 赣州市|