派博傳思國(guó)際中心

標(biāo)題: Titlebook: Nonlinear Functional Analysis; A First Course S. Kesavan Book 2004 Hindustan Book Agency 2004 [打印本頁(yè)]

作者: 衰退    時(shí)間: 2025-3-21 18:28
書目名稱Nonlinear Functional Analysis影響因子(影響力)




書目名稱Nonlinear Functional Analysis影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Functional Analysis網(wǎng)絡(luò)公開度




書目名稱Nonlinear Functional Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Functional Analysis被引頻次




書目名稱Nonlinear Functional Analysis被引頻次學(xué)科排名




書目名稱Nonlinear Functional Analysis年度引用




書目名稱Nonlinear Functional Analysis年度引用學(xué)科排名




書目名稱Nonlinear Functional Analysis讀者反饋




書目名稱Nonlinear Functional Analysis讀者反饋學(xué)科排名





作者: 流出    時(shí)間: 2025-3-21 21:37

作者: 過(guò)度    時(shí)間: 2025-3-22 01:11

作者: Abjure    時(shí)間: 2025-3-22 06:50
The Brouwer Degree,The topological degree is a useful tool in the study of existence of solutions to nonlinear equations. In this chapter, we will study the finite dimensional version of the degree, known as the Brouwer degree.
作者: 漂浮    時(shí)間: 2025-3-22 11:41
The Leray - Schauder Degree,Let . be a (real) Banach space. Henceforth, unless otherwise stated, all mappings of . into itself, or any other space, will be assumed to be continuous and mapping bounded sets into bounded sets.
作者: FACET    時(shí)間: 2025-3-22 13:21
Critical Points of Functionals,In the last section of the preceding chapter, we have already seen examples of how solutions to certain nonlinear equations could be obtained as critical points of appropriate functionals.
作者: 小母馬    時(shí)間: 2025-3-22 18:50
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/667511.jpg
作者: CBC471    時(shí)間: 2025-3-23 00:27
done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th
作者: Hyperopia    時(shí)間: 2025-3-23 02:41
S. Kesavan done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th
作者: outrage    時(shí)間: 2025-3-23 06:53

作者: 中國(guó)紀(jì)念碑    時(shí)間: 2025-3-23 11:55
Bifurcation Theory,o be answered satisfactorily, even when the spaces . and . are finite dimensional. Very often, we are led to study nonlinear equations dependent on a parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above e
作者: Nonporous    時(shí)間: 2025-3-23 17:12
Bifurcation Theory,parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above equation to possess a ‘nice’ family of solutions (often called the trivial solutions). However, for certain values of λ, new solutions may appear and hence we use the term ‘bifurcation’.
作者: 規(guī)章    時(shí)間: 2025-3-23 18:59

作者: invulnerable    時(shí)間: 2025-3-24 01:28

作者: oracle    時(shí)間: 2025-3-24 03:08

作者: 航海太平洋    時(shí)間: 2025-3-24 09:41
5樓
作者: 聯(lián)想記憶    時(shí)間: 2025-3-24 13:37
6樓
作者: 鄙視    時(shí)間: 2025-3-24 14:49
6樓
作者: consent    時(shí)間: 2025-3-24 22:25
6樓
作者: 委屈    時(shí)間: 2025-3-25 00:09
6樓
作者: 束縛    時(shí)間: 2025-3-25 05:46
7樓
作者: 浮雕    時(shí)間: 2025-3-25 08:41
7樓
作者: STYX    時(shí)間: 2025-3-25 15:04
7樓
作者: 歪曲道理    時(shí)間: 2025-3-25 16:54
7樓
作者: 圖畫文字    時(shí)間: 2025-3-25 21:23
8樓
作者: exophthalmos    時(shí)間: 2025-3-26 00:44
8樓
作者: 小隔間    時(shí)間: 2025-3-26 06:58
8樓
作者: 有特色    時(shí)間: 2025-3-26 10:51
8樓
作者: Urea508    時(shí)間: 2025-3-26 12:40
9樓
作者: 人造    時(shí)間: 2025-3-26 17:32
9樓
作者: 莎草    時(shí)間: 2025-3-27 00:20
9樓
作者: 嘲笑    時(shí)間: 2025-3-27 02:03
9樓
作者: 大漩渦    時(shí)間: 2025-3-27 07:27
10樓
作者: Modicum    時(shí)間: 2025-3-27 13:29
10樓
作者: 工作    時(shí)間: 2025-3-27 16:12
10樓
作者: 厚顏    時(shí)間: 2025-3-27 18:58
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
崇义县| 新巴尔虎右旗| 新源县| 常山县| 乐山市| 定襄县| 兴仁县| 荥经县| 灵台县| 容城县| 尖扎县| 闵行区| 乌海市| 和顺县| 桃园市| 金川县| 漠河县| 武清区| 平安县| 页游| 锡林浩特市| 梅河口市| 图们市| 建平县| 壤塘县| 屯门区| 恩平市| 顺昌县| 汉中市| 扎兰屯市| 澄迈县| 河西区| 思茅市| 潞城市| 芦山县| 合江县| 喀喇| 五河县| 乌鲁木齐市| 荥经县| 铜梁县|