派博傳思國(guó)際中心

標(biāo)題: Titlebook: Nonlinear Functional Analysis; A First Course S. Kesavan Book 2004 Hindustan Book Agency 2004 [打印本頁(yè)]

作者: 衰退    時(shí)間: 2025-3-21 18:28
書目名稱Nonlinear Functional Analysis影響因子(影響力)




書目名稱Nonlinear Functional Analysis影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Functional Analysis網(wǎng)絡(luò)公開度




書目名稱Nonlinear Functional Analysis網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Functional Analysis被引頻次




書目名稱Nonlinear Functional Analysis被引頻次學(xué)科排名




書目名稱Nonlinear Functional Analysis年度引用




書目名稱Nonlinear Functional Analysis年度引用學(xué)科排名




書目名稱Nonlinear Functional Analysis讀者反饋




書目名稱Nonlinear Functional Analysis讀者反饋學(xué)科排名





作者: 流出    時(shí)間: 2025-3-21 21:37

作者: 過(guò)度    時(shí)間: 2025-3-22 01:11

作者: Abjure    時(shí)間: 2025-3-22 06:50
The Brouwer Degree,The topological degree is a useful tool in the study of existence of solutions to nonlinear equations. In this chapter, we will study the finite dimensional version of the degree, known as the Brouwer degree.
作者: 漂浮    時(shí)間: 2025-3-22 11:41
The Leray - Schauder Degree,Let . be a (real) Banach space. Henceforth, unless otherwise stated, all mappings of . into itself, or any other space, will be assumed to be continuous and mapping bounded sets into bounded sets.
作者: FACET    時(shí)間: 2025-3-22 13:21
Critical Points of Functionals,In the last section of the preceding chapter, we have already seen examples of how solutions to certain nonlinear equations could be obtained as critical points of appropriate functionals.
作者: 小母馬    時(shí)間: 2025-3-22 18:50
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/667511.jpg
作者: CBC471    時(shí)間: 2025-3-23 00:27
done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th
作者: Hyperopia    時(shí)間: 2025-3-23 02:41
S. Kesavan done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th
作者: outrage    時(shí)間: 2025-3-23 06:53

作者: 中國(guó)紀(jì)念碑    時(shí)間: 2025-3-23 11:55
Bifurcation Theory,o be answered satisfactorily, even when the spaces . and . are finite dimensional. Very often, we are led to study nonlinear equations dependent on a parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above e
作者: Nonporous    時(shí)間: 2025-3-23 17:12
Bifurcation Theory,parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above equation to possess a ‘nice’ family of solutions (often called the trivial solutions). However, for certain values of λ, new solutions may appear and hence we use the term ‘bifurcation’.
作者: 規(guī)章    時(shí)間: 2025-3-23 18:59

作者: invulnerable    時(shí)間: 2025-3-24 01:28

作者: oracle    時(shí)間: 2025-3-24 03:08

作者: 航海太平洋    時(shí)間: 2025-3-24 09:41
5樓
作者: 聯(lián)想記憶    時(shí)間: 2025-3-24 13:37
6樓
作者: 鄙視    時(shí)間: 2025-3-24 14:49
6樓
作者: consent    時(shí)間: 2025-3-24 22:25
6樓
作者: 委屈    時(shí)間: 2025-3-25 00:09
6樓
作者: 束縛    時(shí)間: 2025-3-25 05:46
7樓
作者: 浮雕    時(shí)間: 2025-3-25 08:41
7樓
作者: STYX    時(shí)間: 2025-3-25 15:04
7樓
作者: 歪曲道理    時(shí)間: 2025-3-25 16:54
7樓
作者: 圖畫文字    時(shí)間: 2025-3-25 21:23
8樓
作者: exophthalmos    時(shí)間: 2025-3-26 00:44
8樓
作者: 小隔間    時(shí)間: 2025-3-26 06:58
8樓
作者: 有特色    時(shí)間: 2025-3-26 10:51
8樓
作者: Urea508    時(shí)間: 2025-3-26 12:40
9樓
作者: 人造    時(shí)間: 2025-3-26 17:32
9樓
作者: 莎草    時(shí)間: 2025-3-27 00:20
9樓
作者: 嘲笑    時(shí)間: 2025-3-27 02:03
9樓
作者: 大漩渦    時(shí)間: 2025-3-27 07:27
10樓
作者: Modicum    時(shí)間: 2025-3-27 13:29
10樓
作者: 工作    時(shí)間: 2025-3-27 16:12
10樓
作者: 厚顏    時(shí)間: 2025-3-27 18:58
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
宜丰县| 钦州市| 大姚县| 鄯善县| 成都市| 辉南县| 磴口县| 台北市| 寻甸| 南投市| 方山县| 土默特左旗| 禹城市| 菏泽市| 汪清县| 肇州县| 蕉岭县| 邢台市| 平山县| 平凉市| 康乐县| 大悟县| 长葛市| 杭锦后旗| 兰溪市| 曲阳县| 谷城县| 伊吾县| 方山县| 扶绥县| 巨鹿县| 三明市| 屏东县| 通辽市| 古田县| 韶山市| 平远县| 星子县| 南部县| 林芝县| 旬阳县|