標(biāo)題: Titlebook: Nonlinear Functional Analysis; A First Course S. Kesavan Book 2004 Hindustan Book Agency 2004 [打印本頁(yè)] 作者: 衰退 時(shí)間: 2025-3-21 18:28
書目名稱Nonlinear Functional Analysis影響因子(影響力)
作者: 流出 時(shí)間: 2025-3-21 21:37 作者: 過(guò)度 時(shí)間: 2025-3-22 01:11 作者: Abjure 時(shí)間: 2025-3-22 06:50
The Brouwer Degree,The topological degree is a useful tool in the study of existence of solutions to nonlinear equations. In this chapter, we will study the finite dimensional version of the degree, known as the Brouwer degree.作者: 漂浮 時(shí)間: 2025-3-22 11:41
The Leray - Schauder Degree,Let . be a (real) Banach space. Henceforth, unless otherwise stated, all mappings of . into itself, or any other space, will be assumed to be continuous and mapping bounded sets into bounded sets.作者: FACET 時(shí)間: 2025-3-22 13:21
Critical Points of Functionals,In the last section of the preceding chapter, we have already seen examples of how solutions to certain nonlinear equations could be obtained as critical points of appropriate functionals.作者: 小母馬 時(shí)間: 2025-3-22 18:50
Texts and Readings in Mathematicshttp://image.papertrans.cn/n/image/667511.jpg作者: CBC471 時(shí)間: 2025-3-23 00:27
done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th作者: Hyperopia 時(shí)間: 2025-3-23 02:41
S. Kesavan done.Provides students with methods and ideas they can use .The Art of Proof. is designed for a one-semester or two-quarter course. A typical student will have studied calculus (perhaps also linear algebra) with reasonable success. With an artful mixture of chatty style and interesting examples, th作者: outrage 時(shí)間: 2025-3-23 06:53 作者: 中國(guó)紀(jì)念碑 時(shí)間: 2025-3-23 11:55
Bifurcation Theory,o be answered satisfactorily, even when the spaces . and . are finite dimensional. Very often, we are led to study nonlinear equations dependent on a parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above e作者: Nonporous 時(shí)間: 2025-3-23 17:12
Bifurcation Theory,parameter of the form.where .: . × . → ., with ., . and . being Banach spaces. Usually, it will turn out that . = ?. It is quite usual for the above equation to possess a ‘nice’ family of solutions (often called the trivial solutions). However, for certain values of λ, new solutions may appear and hence we use the term ‘bifurcation’.作者: 規(guī)章 時(shí)間: 2025-3-23 18:59 作者: invulnerable 時(shí)間: 2025-3-24 01:28 作者: oracle 時(shí)間: 2025-3-24 03:08 作者: 航海太平洋 時(shí)間: 2025-3-24 09:41
5樓作者: 聯(lián)想記憶 時(shí)間: 2025-3-24 13:37
6樓作者: 鄙視 時(shí)間: 2025-3-24 14:49
6樓作者: consent 時(shí)間: 2025-3-24 22:25
6樓作者: 委屈 時(shí)間: 2025-3-25 00:09
6樓作者: 束縛 時(shí)間: 2025-3-25 05:46
7樓作者: 浮雕 時(shí)間: 2025-3-25 08:41
7樓作者: STYX 時(shí)間: 2025-3-25 15:04
7樓作者: 歪曲道理 時(shí)間: 2025-3-25 16:54
7樓作者: 圖畫文字 時(shí)間: 2025-3-25 21:23
8樓作者: exophthalmos 時(shí)間: 2025-3-26 00:44
8樓作者: 小隔間 時(shí)間: 2025-3-26 06:58
8樓作者: 有特色 時(shí)間: 2025-3-26 10:51
8樓作者: Urea508 時(shí)間: 2025-3-26 12:40
9樓作者: 人造 時(shí)間: 2025-3-26 17:32
9樓作者: 莎草 時(shí)間: 2025-3-27 00:20
9樓作者: 嘲笑 時(shí)間: 2025-3-27 02:03
9樓作者: 大漩渦 時(shí)間: 2025-3-27 07:27
10樓作者: Modicum 時(shí)間: 2025-3-27 13:29
10樓作者: 工作 時(shí)間: 2025-3-27 16:12
10樓作者: 厚顏 時(shí)間: 2025-3-27 18:58
10樓