派博傳思國際中心

標(biāo)題: Titlebook: Nonlinear Differential Equations and Dynamical Systems; Ferdinand Verhulst Textbook 1996Latest edition Springer-Verlag Berlin Heidelberg 1 [打印本頁]

作者: 不能平庸    時(shí)間: 2025-3-21 16:20
書目名稱Nonlinear Differential Equations and Dynamical Systems影響因子(影響力)




書目名稱Nonlinear Differential Equations and Dynamical Systems影響因子(影響力)學(xué)科排名




書目名稱Nonlinear Differential Equations and Dynamical Systems網(wǎng)絡(luò)公開度




書目名稱Nonlinear Differential Equations and Dynamical Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Nonlinear Differential Equations and Dynamical Systems被引頻次




書目名稱Nonlinear Differential Equations and Dynamical Systems被引頻次學(xué)科排名




書目名稱Nonlinear Differential Equations and Dynamical Systems年度引用




書目名稱Nonlinear Differential Equations and Dynamical Systems年度引用學(xué)科排名




書目名稱Nonlinear Differential Equations and Dynamical Systems讀者反饋




書目名稱Nonlinear Differential Equations and Dynamical Systems讀者反饋學(xué)科排名





作者: 箴言    時(shí)間: 2025-3-21 22:43
Textbook 1996Latest editionterature. The basic concepts necessary to study differential equations - critical points and equilibrium, periodic solutions, invariant sets and invariant manifolds - are discussed first. Stability theory is then developed starting with linearisation methods going back to Lyapunov and Poincaré. In t
作者: 多節(jié)    時(shí)間: 2025-3-22 03:49

作者: GRACE    時(shí)間: 2025-3-22 04:54

作者: anthesis    時(shí)間: 2025-3-22 12:17

作者: modifier    時(shí)間: 2025-3-22 13:32

作者: 藝術(shù)    時(shí)間: 2025-3-22 17:50

作者: molest    時(shí)間: 2025-3-23 00:59
Introduction, the form . using Newton’s fluxie notation .. The variable . is a scalar, . ∈ ?, often identified with time. The vector function . : . → ?. is continuous in . and .; . is an open subset of ?., so . ∈ ?..
作者: otic-capsule    時(shí)間: 2025-3-23 03:32

作者: Ordnance    時(shí)間: 2025-3-23 06:09

作者: Favorable    時(shí)間: 2025-3-23 11:49
Stability by linearisation,pecial solutions. In section 5.4 we have discussed linearisation and we have given a summary of the analysis of linear systems. These methods have been in use for a long time but only since around 1900 the justification of linearisation methods has been started by Poincaré and Lyapunov.
作者: Loathe    時(shí)間: 2025-3-23 17:23
Stability analysis by the direct method,eceding chapter. When linearising one starts off with small perturbations of the equilibrium or periodic solution and one studies the effect of these . perturbations. In the so-called direct method one characterises the solution in a way with respect to stability which is not necessarily local.
作者: 熱心    時(shí)間: 2025-3-23 19:09

作者: SOW    時(shí)間: 2025-3-23 23:26

作者: sorbitol    時(shí)間: 2025-3-24 05:53

作者: 不透明性    時(shí)間: 2025-3-24 09:21
978-3-540-60934-6Springer-Verlag Berlin Heidelberg 1996
作者: abstemious    時(shí)間: 2025-3-24 13:50
Nonlinear Differential Equations and Dynamical Systems978-3-642-61453-8Series ISSN 0172-5939 Series E-ISSN 2191-6675
作者: 高興去去    時(shí)間: 2025-3-24 17:49
Universitexthttp://image.papertrans.cn/n/image/667390.jpg
作者: aesthetician    時(shí)間: 2025-3-24 19:33
https://doi.org/10.1007/978-3-642-61453-8Chaos; averaging methods; bifurcation theory; differential equations; dynamical systems; dynamische Syste
作者: 急性    時(shí)間: 2025-3-25 00:17

作者: 暖昧關(guān)系    時(shí)間: 2025-3-25 06:55
Autonomous equations,alled autonomous. A scalar equation of order . is often written as . in which . = . ., . = 0, 1, . . ., ., . = . In characterising the solutions of autonomous equations we shall use three special sets of solutions: . or ., . and ..
作者: Calculus    時(shí)間: 2025-3-25 08:59

作者: conquer    時(shí)間: 2025-3-25 14:09
Stability analysis by the direct method,eceding chapter. When linearising one starts off with small perturbations of the equilibrium or periodic solution and one studies the effect of these . perturbations. In the so-called direct method one characterises the solution in a way with respect to stability which is not necessarily local.
作者: HEAVY    時(shí)間: 2025-3-25 19:29
The method of averaging,osed to the convergent series studied in the preceding chapter; see section 9.2 for the basic concepts and more discussion in Sanders and Verhulst (1985), chapter 2. This asymptotic character of the approximations is more natural in many problems; also the method turns out to be very powerful, it is not restricted to periodic solutions.
作者: Dedication    時(shí)間: 2025-3-25 21:37

作者: Confidential    時(shí)間: 2025-3-26 00:44

作者: 反省    時(shí)間: 2025-3-26 06:10
Critical points,In section 2.2 we saw that linearisation in a neighbourhood of a critical point of an autonomous system . leads to the equation. with . constant . × .-matrix; in this formulation the critical point has been translated to the origin. We exclude in this chapter the case of a singular matrix ., so..
作者: 咒語    時(shí)間: 2025-3-26 10:41
Periodic solutions,The concept of a periodic solution of a differential equation was introduced in section 2.3. We have shown that in the case of an autonomous equation the periodic solutions correspond with closed orbits in phase-space.
作者: 比目魚    時(shí)間: 2025-3-26 14:42

作者: insurrection    時(shí)間: 2025-3-26 17:22
Introduction to perturbation theory,This chapter is intended as an introduction for those readers who are not aquainted with the basics of perturbation theory. In that case it serves in preparing for the subsequent chapters.
作者: 震驚    時(shí)間: 2025-3-26 22:51
,The Poincaré-Lindstedt method,In this chapter we shall show how to find convergent series approximations of . solutions by using the expansion theorem and the periodicity of the solution. This method is usually called after Poincaré and Lindstedt, it is also called the continuation method.
作者: crease    時(shí)間: 2025-3-27 02:10

作者: 背帶    時(shí)間: 2025-3-27 06:02
Hamiltonian systems,In dynamical systems theory, conservative systems, in particular Hamiltonian systems, play an important part. Especially in applications from mechanics, the underlying structure is usually Hamiltonian to which dissipative effects have been added. Exploring this underlying structure is usually profitable.
作者: depreciate    時(shí)間: 2025-3-27 10:13
6樓
作者: glowing    時(shí)間: 2025-3-27 13:41
6樓
作者: ARBOR    時(shí)間: 2025-3-27 19:48
6樓
作者: 艱苦地移動    時(shí)間: 2025-3-28 01:42
6樓
作者: 泰然自若    時(shí)間: 2025-3-28 05:45
7樓
作者: ROOF    時(shí)間: 2025-3-28 08:04
7樓
作者: LEER    時(shí)間: 2025-3-28 13:26
7樓
作者: Muffle    時(shí)間: 2025-3-28 14:57
7樓
作者: 散步    時(shí)間: 2025-3-28 22:37
8樓
作者: 金哥占卜者    時(shí)間: 2025-3-29 00:19
8樓
作者: RACE    時(shí)間: 2025-3-29 03:54
8樓
作者: 代理人    時(shí)間: 2025-3-29 07:33
8樓
作者: 辮子帶來幫助    時(shí)間: 2025-3-29 14:23
9樓
作者: NATAL    時(shí)間: 2025-3-29 18:15
9樓
作者: 許可    時(shí)間: 2025-3-29 21:54
9樓
作者: Fester    時(shí)間: 2025-3-30 03:53
9樓
作者: 調(diào)味品    時(shí)間: 2025-3-30 07:21
10樓
作者: aphasia    時(shí)間: 2025-3-30 09:29
10樓
作者: MIRE    時(shí)間: 2025-3-30 12:30
10樓
作者: GOUGE    時(shí)間: 2025-3-30 19:28
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
嘉定区| 武陟县| 阳朔县| 阿克陶县| 永顺县| 旅游| 咸丰县| 县级市| 秦皇岛市| 阳东县| 北流市| 宜阳县| 南漳县| 安庆市| 武川县| 新河县| 家居| 桐梓县| 松阳县| 宜兰市| 陆丰市| 滨州市| 阿合奇县| 衡水市| 新沂市| 开阳县| 鞍山市| 华亭县| 宿迁市| 临武县| 贺兰县| 石狮市| 九龙县| 延庆县| 高淳县| 公主岭市| 长海县| 铁力市| 突泉县| 桐梓县| 台前县|