標(biāo)題: Titlebook: Nondifferentiable Optimization and Polynomial Problems; Naum Z. Shor Book 1998 Springer Science+Business Media Dordrecht 1998 Mathematica. [打印本頁] 作者: 呻吟 時(shí)間: 2025-3-21 19:47
書目名稱Nondifferentiable Optimization and Polynomial Problems影響因子(影響力)
書目名稱Nondifferentiable Optimization and Polynomial Problems影響因子(影響力)學(xué)科排名
書目名稱Nondifferentiable Optimization and Polynomial Problems網(wǎng)絡(luò)公開度
書目名稱Nondifferentiable Optimization and Polynomial Problems網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Nondifferentiable Optimization and Polynomial Problems被引頻次
書目名稱Nondifferentiable Optimization and Polynomial Problems被引頻次學(xué)科排名
書目名稱Nondifferentiable Optimization and Polynomial Problems年度引用
書目名稱Nondifferentiable Optimization and Polynomial Problems年度引用學(xué)科排名
書目名稱Nondifferentiable Optimization and Polynomial Problems讀者反饋
書目名稱Nondifferentiable Optimization and Polynomial Problems讀者反饋學(xué)科排名
作者: 嘲弄 時(shí)間: 2025-3-21 21:56 作者: 松軟無力 時(shí)間: 2025-3-22 04:12
Decomposition Methods Based on Nonsmooth Optimization,es to the external memory of a computer. Such methods convert the solution of the original problem into the solution of a series of problems of lower dimension (blocks). They are particularly efficient if the structure of each block permits the use of special, fast solution methods, or the structure作者: enumaerate 時(shí)間: 2025-3-22 04:53 作者: MAG 時(shí)間: 2025-3-22 11:00 作者: 省略 時(shí)間: 2025-3-22 14:21 作者: 棲息地 時(shí)間: 2025-3-22 18:25
Elements of Convex Analysis, Linear Algebra, and Graph Theory,We shall review a number of fundamental properties of convex sets and functions which will be usefull in the following chapters. This review is based on the latest monographies in convex analysis and optimization, mainly, [Psh 69], [HUL 93], [Roc 70], [Roc 82a], [IT 79], [DV 85].作者: 慎重 時(shí)間: 2025-3-22 23:42 作者: FLAIL 時(shí)間: 2025-3-23 04:38 作者: 清洗 時(shí)間: 2025-3-23 06:47
978-1-4419-4792-5Springer Science+Business Media Dordrecht 1998作者: UTTER 時(shí)間: 2025-3-23 13:33
Nondifferentiable Optimization and Polynomial Problems978-1-4757-6015-6Series ISSN 1571-568X 作者: NIP 時(shí)間: 2025-3-23 15:13 作者: Vertical 時(shí)間: 2025-3-23 21:33
https://doi.org/10.1007/978-1-4757-6015-6Mathematica; algebra; algorithms; calculus; complexity; graph theory; optimization; programming; combinatori作者: 大猩猩 時(shí)間: 2025-3-23 23:23 作者: amygdala 時(shí)間: 2025-3-24 03:03 作者: 大酒杯 時(shí)間: 2025-3-24 07:18
Elements of Information and Numerical Complexity of Polynomial Extremal Problems,ources studying an arbitrary algorithm that solves the given problem. But to get an answer for the question of how good a particular algorithm is we must find the lower bounds for computational resources, the limits that cannot be improved by the “best” algorithm among the potentially possible ones.作者: Amorous 時(shí)間: 2025-3-24 14:33
Book 1998 with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef‘; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x 作者: Halfhearted 時(shí)間: 2025-3-24 15:44 作者: 配偶 時(shí)間: 2025-3-24 19:23 作者: corporate 時(shí)間: 2025-3-24 23:55
1571-568X e is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, ... , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), ... , Pm (:e) are polynomial functions in R with real coefficients. In general, a P作者: 明智的人 時(shí)間: 2025-3-25 06:11 作者: 遺傳 時(shí)間: 2025-3-25 09:20 作者: boisterous 時(shí)間: 2025-3-25 15:20 作者: adduction 時(shí)間: 2025-3-25 19:07
The Role of Ellipsoid Method for Complexity Analysis of Combinatorial Problems,tep of ellipsoid method for . we have to use no more than one constraint from the set of constraints which are not fulfilled at current point. In many cases the problem of finding such a constraint can be formulated in the form of a new combinatorial (in some sense polar to the original) optimization problem (so-called separation problem).作者: Confound 時(shí)間: 2025-3-25 22:49
5樓作者: 宮殿般 時(shí)間: 2025-3-26 00:36
5樓作者: Baffle 時(shí)間: 2025-3-26 08:19
5樓作者: FER 時(shí)間: 2025-3-26 10:14
6樓作者: NORM 時(shí)間: 2025-3-26 13:29
6樓作者: 金桌活畫面 時(shí)間: 2025-3-26 16:53
6樓作者: 毗鄰 時(shí)間: 2025-3-26 22:22
6樓作者: Permanent 時(shí)間: 2025-3-27 02:50
7樓作者: 流動才波動 時(shí)間: 2025-3-27 08:43
7樓作者: defendant 時(shí)間: 2025-3-27 11:35
7樓作者: 吸引力 時(shí)間: 2025-3-27 16:06
7樓作者: PHONE 時(shí)間: 2025-3-27 19:02
8樓作者: Chandelier 時(shí)間: 2025-3-28 00:02
8樓作者: AUGER 時(shí)間: 2025-3-28 02:53
8樓作者: 不要嚴(yán)酷 時(shí)間: 2025-3-28 07:12
8樓作者: corporate 時(shí)間: 2025-3-28 12:38
9樓作者: CHASM 時(shí)間: 2025-3-28 18:11
9樓作者: 祖?zhèn)?nbsp; 時(shí)間: 2025-3-28 21:05
9樓作者: 淡紫色花 時(shí)間: 2025-3-29 00:43
9樓作者: FLIRT 時(shí)間: 2025-3-29 03:40
10樓作者: 外向者 時(shí)間: 2025-3-29 10:11
10樓作者: Cytology 時(shí)間: 2025-3-29 12:34
10樓作者: OTTER 時(shí)間: 2025-3-29 18:14
10樓