標(biāo)題: Titlebook: Noncommutative Harmonic Analysis; In Honor of Jacques Patrick Delorme,Michèle Vergne Book 2004 Birkh?user Boston 2004 Dolbeault cohomology [打印本頁] 作者: Lampoon 時間: 2025-3-21 16:35
書目名稱Noncommutative Harmonic Analysis影響因子(影響力)
作者: 一致性 時間: 2025-3-21 20:48 作者: SUGAR 時間: 2025-3-22 02:03 作者: 不整齊 時間: 2025-3-22 08:13
A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil thl terminology) is replaced by an arbitrary irreducible representation τ of .. For the generalization we establish the existence of a unique minimal representation of g associated to τ..Another application (3) yields a noncompact analogue of the Borel-Weil theorem. For a suitable semisimple Lie group作者: anesthesia 時間: 2025-3-22 10:00
A localization argument for characters of reductive Lie groups: an introduction and examples,ars in [L]..I have made every effort to present this article so that it is widely accessible. Also, although characteristic cycles of sheaves is mentioned, I do not assume that the reader is familiar with this notion.作者: 新奇 時間: 2025-3-22 13:45 作者: 倫理學(xué) 時間: 2025-3-22 21:05
0743-1643 ine; J.D. Lorch; L.A. Mantini; S.D. Miller; J.D. Novak; M.-N. Panichi; M. Pevzner; W. Rossmann; H. Rubenthaler; W. Schmid; P. Torasso; C. Torossian; E.P. van den Ban; M. 978-1-4612-6489-7978-0-8176-8204-0Series ISSN 0743-1643 Series E-ISSN 2296-505X 作者: homocysteine 時間: 2025-3-22 22:10
Progress in Mathematicshttp://image.papertrans.cn/n/image/667197.jpg作者: beta-cells 時間: 2025-3-23 04:35 作者: outer-ear 時間: 2025-3-23 06:06
Patrick Delorme,Michèle VergneInternational experts on harmonic analysis have contributed to this book.Explores Kontsevich quantization, which has appeared in recent years as a powerful tool作者: ESPY 時間: 2025-3-23 12:31 作者: glisten 時間: 2025-3-23 17:31 作者: adumbrate 時間: 2025-3-23 20:45
,Espace des coefficients de représentations admissibles d’un groupe réductif ,-adique,Soit . le groupe des points sur . d’un groupe linéaire algébrique réductif et connexe défini sur ., où . est un corps local non archimédien de caractéristique nulle. On note .. le plus grand tore déployé du centre de ..作者: 與野獸博斗者 時間: 2025-3-24 00:26
,Dualité entre ,/,, et le groupe renversé ,,,,Soit . un groupe algébrique semi-simple connexe, simplement connexe, défini et déployé sur ?. On identifie . à l’ensemble de ses points complexes. On note . la conjugaison par rapport à sa forme réelle déployée G.. On note g l’algèbre de Lie de ..作者: muscle-fibers 時間: 2025-3-24 05:59 作者: 老巫婆 時間: 2025-3-24 09:23
,Symmetric spaces and star representations III. The Poincaré disc,s. We realize the regularrepresentation of .(2, ?) on the space of smooth functions on the Poincare disc as a subrepresentation of .(2, ?) in the Weyl–Moyal star product algebra on ?.. We indicate how it is possible to extend our construction to the general case of a Hermitian symmetric space of tube type.作者: 極力證明 時間: 2025-3-24 14:44 作者: 逢迎白雪 時間: 2025-3-24 18:37 作者: commute 時間: 2025-3-24 22:35
Noncommutative Harmonic Analysis978-0-8176-8204-0Series ISSN 0743-1643 Series E-ISSN 2296-505X 作者: 實施生效 時間: 2025-3-25 03:06
Morris identities and the total residue for a system of type ,,,ed by roots of type .. = {(..?..)|1 ≤ ., . ≤ (.+1), . ≠ .}. As pointed out by Zeilberger [Z], these calculations are mere reformulations of Morris identities [M], where the total residue function replaces here the iterated constant term. The proof we give of these identities follows closely (as sugg作者: GORGE 時間: 2025-3-25 04:16
,Symmetric spaces and star representations III. The Poincaré disc,s. We realize the regularrepresentation of .(2, ?) on the space of smooth functions on the Poincare disc as a subrepresentation of .(2, ?) in the Weyl–Moyal star product algebra on ?.. We indicate how it is possible to extend our construction to the general case of a Hermitian symmetric space of tub作者: 挖掘 時間: 2025-3-25 10:27
Local zeta functions for a class of symmetric spaces,ily of symmetric spaces arising from 3-gradings of reductive Lie algebras. Let . be a 3-graded real reductive Lie algebra. Let . be the adjoint group of . and let . be the analytic subgroup of . corresponding to the Lie algebra g. We make the assumption that the prehomogeneous vector space (., ... i作者: 詞匯記憶方法 時間: 2025-3-25 15:09 作者: 不安 時間: 2025-3-25 18:16
,La formule de Plancherel pour les groupes de Lie presque algébriques réels, a proof of this formula in the philosophy of the orbit method and following the lines of the one given by M. Duflo and M. Vergne for simply connected semisimple Lie groups..The main ingredients of the proof are:.In order to illustrate the main steps of the proof, we treat the example of the semidir作者: OFF 時間: 2025-3-25 22:10 作者: 減至最低 時間: 2025-3-26 00:23 作者: facilitate 時間: 2025-3-26 04:25
,Representations of ,, and the distribution of points in ?,,inal problem is the following: Let . = .(..,..,..., ..) be the function field of affine .-space . = .. over an algebraically closed field ., and suppose . ? . is any subfield. Then the question is: Is . = . ∩ .[..,..,..., .] a finitely generated .-algebra. In most cases of interest, . is the field o作者: 細(xì)微差別 時間: 2025-3-26 11:53
A localization argument for characters of reductive Lie groups: an introduction and examples,tirely different character formulas for reductive Lie groups and answers the question posed in [Sch]..A corresponding problem in the compact group setting was solved by N. Berline, E. Getzler and M. Vergne in [BGV] by an application of the theory of equivariant forms and, particularly, the fixed poi作者: blister 時間: 2025-3-26 14:41 作者: 自負(fù)的人 時間: 2025-3-26 18:09
Summation formulas, from Poisson and Voronoi to the present,on of Poisson summation asserts the equality. valid (at least) for all Schwartz functions .. Let us take a brief historical detour to the beginning of the 20th century, before the notion of Schwartz function had been introduced. The custom then was to state (1.1) for more general functions .,such as作者: 首創(chuàng)精神 時間: 2025-3-26 22:22 作者: –吃 時間: 2025-3-27 03:31 作者: Exclaim 時間: 2025-3-27 08:04
Summation formulas, from Poisson and Voronoi to the present,ndeed, the general case of (1.2) can be reduced to the special case of . = 0, . = 1, which amounts to the statement that the Fourier series of a periodic function of bounded variation converges pointwise, to the average of its left and right-hand limits.作者: 蘆筍 時間: 2025-3-27 09:41
0743-1643 s as a powerful tool.This volume is devoted to the theme of Noncommutative Harmonic Analysis and consists of articles in honor of Jacques Carmona, whose scientific interests range through all aspects of Lie group representations. The topics encompass the theory of representations of reductive Lie gr作者: 偽證 時間: 2025-3-27 15:54 作者: AVID 時間: 2025-3-27 19:26
,La formule de Plancherel pour les groupes de Lie presque algébriques réels, semisimple Lie groups..The main ingredients of the proof are:.In order to illustrate the main steps of the proof, we treat the example of the semidirect product of the universal covering of SL.(?) by the three-dimensional Heisenberg group.作者: 彎彎曲曲 時間: 2025-3-28 00:55
Intertwining ladder representations for SU(,, ,) into Dolbeault cohomology,es the Dolbeault model into the vector bundle model. By passing through the Fock space realization of the ladder representations, we invert the Penrose transform, and thus intertwine the ladder representations into Dolbeault cohomology.作者: UTTER 時間: 2025-3-28 04:24
,McKay’s correspondence and characters of finite subgroups of ,(2),aturally as numerators of Poincaré series associated to finite subgroups of SU(2) acting on polynomials in two variables. These polynomials have been the subject of a number of investigations, but their interpretation as characters has apparently not been noticed.作者: ORE 時間: 2025-3-28 07:45 作者: 假裝是你 時間: 2025-3-28 10:37 作者: 駁船 時間: 2025-3-28 15:42
第4樓作者: 悄悄移動 時間: 2025-3-28 19:09
第4樓作者: obviate 時間: 2025-3-29 00:42
5樓作者: Excise 時間: 2025-3-29 06:58
5樓作者: effrontery 時間: 2025-3-29 07:29
5樓作者: Focus-Words 時間: 2025-3-29 12:20
5樓作者: emission 時間: 2025-3-29 16:38
6樓作者: 無情 時間: 2025-3-29 22:21
6樓作者: Irremediable 時間: 2025-3-30 00:56
6樓作者: 一小塊 時間: 2025-3-30 05:45
6樓作者: 群居動物 時間: 2025-3-30 09:49
7樓作者: 不幸的人 時間: 2025-3-30 13:10
7樓作者: hegemony 時間: 2025-3-30 16:59
7樓作者: 雜色 時間: 2025-3-30 21:41
7樓作者: organism 時間: 2025-3-31 03:34
8樓作者: rectum 時間: 2025-3-31 05:23
8樓作者: accomplishment 時間: 2025-3-31 11:41
8樓作者: curettage 時間: 2025-3-31 17:05
8樓作者: 釘牢 時間: 2025-3-31 19:00
9樓作者: 生意行為 時間: 2025-4-1 01:11
9樓作者: 四指套 時間: 2025-4-1 05:28
9樓作者: 樂器演奏者 時間: 2025-4-1 07:44
9樓作者: antidepressant 時間: 2025-4-1 11:03
10樓作者: 不要嚴(yán)酷 時間: 2025-4-1 18:21
10樓作者: Hyaluronic-Acid 時間: 2025-4-1 20:59
10樓作者: 清唱劇 時間: 2025-4-2 01:47
10樓