作者: 轉(zhuǎn)換 時(shí)間: 2025-3-22 00:06
Book 2017ns such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well..作者: 音的強(qiáng)弱 時(shí)間: 2025-3-22 00:44 作者: 收藏品 時(shí)間: 2025-3-22 06:19 作者: 豐滿中國 時(shí)間: 2025-3-22 11:47
Shigeyoshi OgawaIs the first book on a stochastic calculus of noncausal nature based on the noncausal stochastic integral introduced by the author in 1979.Begins with the study of fundamental properties of the noncau作者: 陶瓷 時(shí)間: 2025-3-22 14:22
Noncausal Calculus,We have seen in the previous chapter that the theory of It? calculus was established after the introduction of the stochastic integral called the It? integral and that this . integral has two important features as follows.作者: Culpable 時(shí)間: 2025-3-22 17:41
Brownian Particle Equation,The Brownian particle equation, which we call . for short, is an SPDE (stochastic partial differential equation) of the first order including the white noise . as coefficients at least in its principal part.作者: unstable-angina 時(shí)間: 2025-3-23 01:02
Noncausal SIE,A boundary value problem of an ordinary differential equation in a randomly disturbed situation would lead us to a stochastic integral equation of Fredholm type. In this chapter we study such an SIE in the framework of our noncausal calculus.作者: CHARM 時(shí)間: 2025-3-23 01:52
Stochastic Fourier Transformation,We have seen in the previous chapter that the stochastic Fourier transformation (SFT) and the stochastic Fourier coefficients (SFCs) serve as effective tools for the study of the noncausal SIE of Fredholm type. In this chapter we shall study basic properties of these SFT and SFC.作者: 不如樂死去 時(shí)間: 2025-3-23 07:34 作者: 多產(chǎn)魚 時(shí)間: 2025-3-23 12:33 作者: indenture 時(shí)間: 2025-3-23 15:05
978-4-431-56825-4Springer Japan KK 2017作者: 希望 時(shí)間: 2025-3-23 19:11 作者: genesis 時(shí)間: 2025-3-24 00:13
https://doi.org/10.1007/978-4-431-56576-5Noncausal; Stochastic Calculus; random variable; stochastic derivative; principle of causality作者: Crater 時(shí)間: 2025-3-24 06:04 作者: Insul島 時(shí)間: 2025-3-24 09:28 作者: backdrop 時(shí)間: 2025-3-24 11:39 作者: cajole 時(shí)間: 2025-3-24 16:27 作者: 刺耳 時(shí)間: 2025-3-24 22:30 作者: CLAM 時(shí)間: 2025-3-25 02:43 作者: 領(lǐng)袖氣質(zhì) 時(shí)間: 2025-3-25 05:36
Noncausal Integral and Wiener Chaos,the relation with the causal calculus around the It? integral and the symmetric integral .. We intend to give in this chapter a sketch of our noncausal calculus from the viewpoint of the theory of homogeneous chaos.作者: Endemic 時(shí)間: 2025-3-25 09:51 作者: 馬賽克 時(shí)間: 2025-3-25 13:14
5樓作者: 驚呼 時(shí)間: 2025-3-25 18:51
5樓作者: 審問,審訊 時(shí)間: 2025-3-25 21:14
5樓作者: 認(rèn)為 時(shí)間: 2025-3-26 03:19
5樓作者: Albumin 時(shí)間: 2025-3-26 07:20
6樓作者: 周興旺 時(shí)間: 2025-3-26 08:50
6樓作者: GULF 時(shí)間: 2025-3-26 14:04
6樓作者: 兒童 時(shí)間: 2025-3-26 17:05
6樓作者: 灰姑娘 時(shí)間: 2025-3-26 23:18
7樓作者: Neutropenia 時(shí)間: 2025-3-27 04:55
7樓作者: 領(lǐng)導(dǎo)權(quán) 時(shí)間: 2025-3-27 07:44
7樓作者: Legion 時(shí)間: 2025-3-27 10:44
7樓作者: Inordinate 時(shí)間: 2025-3-27 14:32
8樓作者: 最初 時(shí)間: 2025-3-27 21:06
8樓作者: 慢慢流出 時(shí)間: 2025-3-28 00:06
8樓作者: G-spot 時(shí)間: 2025-3-28 04:08
8樓作者: languid 時(shí)間: 2025-3-28 07:45
9樓作者: Venules 時(shí)間: 2025-3-28 11:38
9樓作者: amorphous 時(shí)間: 2025-3-28 14:37
9樓作者: STELL 時(shí)間: 2025-3-28 21:03
9樓作者: 先兆 時(shí)間: 2025-3-29 00:41
10樓作者: Magisterial 時(shí)間: 2025-3-29 06:39
10樓作者: ATRIA 時(shí)間: 2025-3-29 09:30
10樓作者: 不適當(dāng) 時(shí)間: 2025-3-29 12:45
10樓