派博傳思國際中心

標(biāo)題: Titlebook: Noncausal Stochastic Calculus; Shigeyoshi Ogawa Book 2017 Springer Japan KK 2017 Noncausal.Stochastic Calculus.random variable.stochastic [打印本頁]

作者: bankrupt    時(shí)間: 2025-3-21 17:12
書目名稱Noncausal Stochastic Calculus影響因子(影響力)




書目名稱Noncausal Stochastic Calculus影響因子(影響力)學(xué)科排名




書目名稱Noncausal Stochastic Calculus網(wǎng)絡(luò)公開度




書目名稱Noncausal Stochastic Calculus網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Noncausal Stochastic Calculus被引頻次




書目名稱Noncausal Stochastic Calculus被引頻次學(xué)科排名




書目名稱Noncausal Stochastic Calculus年度引用




書目名稱Noncausal Stochastic Calculus年度引用學(xué)科排名




書目名稱Noncausal Stochastic Calculus讀者反饋




書目名稱Noncausal Stochastic Calculus讀者反饋學(xué)科排名





作者: 轉(zhuǎn)換    時(shí)間: 2025-3-22 00:06
Book 2017ns such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well..
作者: 音的強(qiáng)弱    時(shí)間: 2025-3-22 00:44

作者: 收藏品    時(shí)間: 2025-3-22 06:19

作者: 豐滿中國    時(shí)間: 2025-3-22 11:47
Shigeyoshi OgawaIs the first book on a stochastic calculus of noncausal nature based on the noncausal stochastic integral introduced by the author in 1979.Begins with the study of fundamental properties of the noncau
作者: 陶瓷    時(shí)間: 2025-3-22 14:22
Noncausal Calculus,We have seen in the previous chapter that the theory of It? calculus was established after the introduction of the stochastic integral called the It? integral and that this . integral has two important features as follows.
作者: Culpable    時(shí)間: 2025-3-22 17:41
Brownian Particle Equation,The Brownian particle equation, which we call . for short, is an SPDE (stochastic partial differential equation) of the first order including the white noise . as coefficients at least in its principal part.
作者: unstable-angina    時(shí)間: 2025-3-23 01:02
Noncausal SIE,A boundary value problem of an ordinary differential equation in a randomly disturbed situation would lead us to a stochastic integral equation of Fredholm type. In this chapter we study such an SIE in the framework of our noncausal calculus.
作者: CHARM    時(shí)間: 2025-3-23 01:52
Stochastic Fourier Transformation,We have seen in the previous chapter that the stochastic Fourier transformation (SFT) and the stochastic Fourier coefficients (SFCs) serve as effective tools for the study of the noncausal SIE of Fredholm type. In this chapter we shall study basic properties of these SFT and SFC.
作者: 不如樂死去    時(shí)間: 2025-3-23 07:34

作者: 多產(chǎn)魚    時(shí)間: 2025-3-23 12:33

作者: indenture    時(shí)間: 2025-3-23 15:05
978-4-431-56825-4Springer Japan KK 2017
作者: 希望    時(shí)間: 2025-3-23 19:11

作者: genesis    時(shí)間: 2025-3-24 00:13
https://doi.org/10.1007/978-4-431-56576-5Noncausal; Stochastic Calculus; random variable; stochastic derivative; principle of causality
作者: Crater    時(shí)間: 2025-3-24 06:04

作者: Insul島    時(shí)間: 2025-3-24 09:28

作者: backdrop    時(shí)間: 2025-3-24 11:39

作者: cajole    時(shí)間: 2025-3-24 16:27

作者: 刺耳    時(shí)間: 2025-3-24 22:30

作者: CLAM    時(shí)間: 2025-3-25 02:43

作者: 領(lǐng)袖氣質(zhì)    時(shí)間: 2025-3-25 05:36
Noncausal Integral and Wiener Chaos,the relation with the causal calculus around the It? integral and the symmetric integral .. We intend to give in this chapter a sketch of our noncausal calculus from the viewpoint of the theory of homogeneous chaos.
作者: Endemic    時(shí)間: 2025-3-25 09:51

作者: 馬賽克    時(shí)間: 2025-3-25 13:14
5樓
作者: 驚呼    時(shí)間: 2025-3-25 18:51
5樓
作者: 審問,審訊    時(shí)間: 2025-3-25 21:14
5樓
作者: 認(rèn)為    時(shí)間: 2025-3-26 03:19
5樓
作者: Albumin    時(shí)間: 2025-3-26 07:20
6樓
作者: 周興旺    時(shí)間: 2025-3-26 08:50
6樓
作者: GULF    時(shí)間: 2025-3-26 14:04
6樓
作者: 兒童    時(shí)間: 2025-3-26 17:05
6樓
作者: 灰姑娘    時(shí)間: 2025-3-26 23:18
7樓
作者: Neutropenia    時(shí)間: 2025-3-27 04:55
7樓
作者: 領(lǐng)導(dǎo)權(quán)    時(shí)間: 2025-3-27 07:44
7樓
作者: Legion    時(shí)間: 2025-3-27 10:44
7樓
作者: Inordinate    時(shí)間: 2025-3-27 14:32
8樓
作者: 最初    時(shí)間: 2025-3-27 21:06
8樓
作者: 慢慢流出    時(shí)間: 2025-3-28 00:06
8樓
作者: G-spot    時(shí)間: 2025-3-28 04:08
8樓
作者: languid    時(shí)間: 2025-3-28 07:45
9樓
作者: Venules    時(shí)間: 2025-3-28 11:38
9樓
作者: amorphous    時(shí)間: 2025-3-28 14:37
9樓
作者: STELL    時(shí)間: 2025-3-28 21:03
9樓
作者: 先兆    時(shí)間: 2025-3-29 00:41
10樓
作者: Magisterial    時(shí)間: 2025-3-29 06:39
10樓
作者: ATRIA    時(shí)間: 2025-3-29 09:30
10樓
作者: 不適當(dāng)    時(shí)間: 2025-3-29 12:45
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
建瓯市| 高安市| 株洲县| 澎湖县| 丰城市| 自治县| 尼木县| 关岭| 磴口县| 水城县| 荥阳市| 长治县| 镶黄旗| 泽库县| 灵寿县| 界首市| 鹿邑县| 英吉沙县| 浦县| 民丰县| 黄冈市| 谢通门县| 即墨市| 赤壁市| 佳木斯市| 芜湖县| 江永县| 崇阳县| 恭城| 阿克| 土默特右旗| 东海县| 东山县| 台南市| 安溪县| 鄯善县| 平利县| 屯门区| 吉隆县| 辰溪县| 齐河县|