派博傳思國(guó)際中心

標(biāo)題: Titlebook: Non-metrisable Manifolds; David Gauld Book 2014 Springer Science+Business Media Singapore 2014 Bagpipe Theorem.Brown’s Monotone Union Theo [打印本頁(yè)]

作者: 神像之光環(huán)    時(shí)間: 2025-3-21 18:04
書(shū)目名稱Non-metrisable Manifolds影響因子(影響力)




書(shū)目名稱Non-metrisable Manifolds影響因子(影響力)學(xué)科排名




書(shū)目名稱Non-metrisable Manifolds網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Non-metrisable Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Non-metrisable Manifolds被引頻次




書(shū)目名稱Non-metrisable Manifolds被引頻次學(xué)科排名




書(shū)目名稱Non-metrisable Manifolds年度引用




書(shū)目名稱Non-metrisable Manifolds年度引用學(xué)科排名




書(shū)目名稱Non-metrisable Manifolds讀者反饋




書(shū)目名稱Non-metrisable Manifolds讀者反饋學(xué)科排名





作者: 協(xié)迫    時(shí)間: 2025-3-21 20:35
David Gauldion on neutron physics) I/19A Highly excited levels above the low lying states, unbound states fromcharged-particle reactions (Z = 2 to 18 in I/19A1, Z = 19 to 83 in I/19A2) Data for bound states (stable nuclei) I/18A, B, C Low lying levels (Z = 2 to 36 in I/18A, Z = 37 to 62 in I/18B, Z = 63 to 100
作者: 蚊帳    時(shí)間: 2025-3-22 04:24
David GauldEastern Michigan University Ypsilanti, Michigan The Authors Contents Part I. Laplace Transforms In troduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 General Formulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1. 2 Algebraic
作者: Longitude    時(shí)間: 2025-3-22 08:37
David Gauldmplex parameters within the given range of validity. The author is indebted to Mrs. Jolan Eross for her tireless effort and patience while typing this manuscript. Oregon State University Corvallis, Oregon May 1974 Fritz Oberhettinger Contents Part I. Mellin Transforms Introduction. . . ? . ? ? ? . ?
作者: 最高峰    時(shí)間: 2025-3-22 11:13
Smooth Manifolds,etrisable manifolds, non-metrisable manifolds of low dimension support many distinct differential structures. We then describe exotic differential structures on the long plane; again this is in contrast to the metrisable situation where one must wait until dimension four before finding exotic struct
作者: meretricious    時(shí)間: 2025-3-22 16:47

作者: Resection    時(shí)間: 2025-3-22 17:31
Non-Hausdorff Manifolds and Foliations,rff manifolds also appear as possible models of space-time in ‘many-worlds’ interpretations of quantum mechanics, relating to time travel and as reduced twistor spaces in relativity theory (see, for example, [.], [., pp. 594–595], [., pp. 249–255] and [.]).
作者: output    時(shí)間: 2025-3-22 21:45

作者: 使困惑    時(shí)間: 2025-3-23 04:25

作者: 緯度    時(shí)間: 2025-3-23 08:29
http://image.papertrans.cn/n/image/667131.jpg
作者: DEI    時(shí)間: 2025-3-23 12:56

作者: Semblance    時(shí)間: 2025-3-23 14:46

作者: G-spot    時(shí)間: 2025-3-23 19:33

作者: 彎彎曲曲    時(shí)間: 2025-3-24 00:09
Topological Manifolds,gical space which is locally like euclidean space .. We present some examples and some standard topological properties enjoyed by all manifolds, such as the Tychonoff property and path connectedness. We also show that manifolds have cardinality .. The simplest examples of non-metrisable manifolds ar
作者: 文字    時(shí)間: 2025-3-24 04:42
Edge of the World: When Are Manifolds Metrisable?,nt that a manifold be metrisable is extremely versatile. We list over 100 conditions each of which is equivalent to metrisability of a manifold. At one extreme, metrisability of a manifold implies that it may be embedded as a closed subset of some Euclidean space while at the other extreme knowing t
作者: 高腳酒杯    時(shí)間: 2025-3-24 07:07
Geometric Tools,f a space is the monotone union of a countable sequence of open subsets each homeomorphic to . then the space itself is homeomorphic to .. We then discuss Brown’s Collaring Theorem, which enables us to impose a product structure on a neighbourhood of a metrisable component of the boundary of a manif
作者: 流浪    時(shí)間: 2025-3-24 11:09

作者: 神圣不可    時(shí)間: 2025-3-24 18:47
,Homeomorphisms and Dynamics on?Non-metrisable Manifolds,ill look at some examples of continuous flows. We display a fixed-point free continuous flow on a version of the Prüfer manifold but at the same time show that any flow on the open long ray must have uncountably many fixed points. Our study of homeomorphisms of a non-metrisable manifold relates main
作者: needle    時(shí)間: 2025-3-24 20:03
Are Perfectly Normal Manifolds Metrisable?,.. In the 1930s G?del showed that . was at least consistent with . but then in the 1960s Cohen showed that .. is also consistent with .: so . is independent of .. Then in the 1970s the answer to a long-standing question in the topology of manifolds, whether every perfectly normal manifold is metrisa
作者: Ringworm    時(shí)間: 2025-3-25 00:42
Smooth Manifolds, is smoothness: to determine whether a function between euclidean spaces is differentiable we need only investigate what happens in a neighbourhood of each point. By using a chart to transfer the local coordinate structure from euclidean space to a manifold we may use these transferred coordinates t
作者: 強(qiáng)有力    時(shí)間: 2025-3-25 06:37

作者: 無(wú)可非議    時(shí)間: 2025-3-25 08:36

作者: Scintillations    時(shí)間: 2025-3-25 14:30
d for other applications. Parameters for nuclear levels of stable nuclei have been published in the Volumes I/16B, I/18A, B, C, and in I/19A1, A2. In the Volumes I/19A, B further data obtained from transfer reactions are presented. Volume I/19C contains the data of unstable nuclei far from the stabi
作者: muscle-fibers    時(shí)間: 2025-3-25 16:25

作者: 消瘦    時(shí)間: 2025-3-25 22:33
David Gauld tool in various branches of Mathematics is firmly established. Previous publications include the contributions by A. Erdelyi and Roberts and Kaufmann (see References). Special consideration is given to results involving higher functions as integrand and it is believed that a substantial amount of t
作者: HERE    時(shí)間: 2025-3-26 03:53

作者: conjunctivitis    時(shí)間: 2025-3-26 07:49

作者: photopsia    時(shí)間: 2025-3-26 11:14

作者: 玉米棒子    時(shí)間: 2025-3-26 16:27
Type I Manifolds and the Bagpipe Theorem,f Type I and is countably compact. Nyikos then went on to prove his amazing Bagpipe Theorem which describes the structure of .-bounded surfaces. We present a proof of Nyikos’s Bagpipe Theorem. We also show that there are . many .-bounded, connected surfaces: contrast this with the compact, connected surfaces of which there are only . many.
作者: arbiter    時(shí)間: 2025-3-26 18:20
,Homeomorphisms and Dynamics on?Non-metrisable Manifolds,ly to powers of the long line where we find the situation to be significantly different from the situation for powers of the real line: points where at least two coordinates agree combine to form barriers to the behaviour of homeomorphisms. We also display a surface whose group of homeomorphisms modulo isotopy is isomorphic to ..
作者: 遍及    時(shí)間: 2025-3-26 20:58
Are Perfectly Normal Manifolds Metrisable?,ble, was found to be independent of . too. In this chapter we exhibit (essentially) the perfectly normal, non-metrisable manifold which Rudin and Zenor constructed using .. We also present Rudin’s proof that under ... every perfectly normal manifold is metrisable.
作者: 成份    時(shí)間: 2025-3-27 02:49
Topological Manifolds,ne is eventually constant. Some standard constructions of non-metrisable manifolds are presented, including versions of the Prüfer manifold, Moore’s way of identifying two boundary components to eliminate them as boundary components and Nyikos’s method of inserting a closed long ray into the open unit square of the real plane.
作者: 大雨    時(shí)間: 2025-3-27 05:33

作者: 狂熱語(yǔ)言    時(shí)間: 2025-3-27 10:01

作者: 秘傳    時(shí)間: 2025-3-27 16:35
9樓
作者: Brittle    時(shí)間: 2025-3-27 19:39
9樓
作者: 自戀    時(shí)間: 2025-3-28 00:55
9樓
作者: Abrade    時(shí)間: 2025-3-28 05:21
10樓
作者: 沉思的魚(yú)    時(shí)間: 2025-3-28 09:15
10樓
作者: COWER    時(shí)間: 2025-3-28 13:33
10樓
作者: 直言不諱    時(shí)間: 2025-3-28 18:32
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
威信县| 张掖市| 神木县| 海安县| 滨州市| 延庆县| 旺苍县| 洛浦县| 沿河| 那曲县| 临西县| 彭水| 南通市| 龙井市| 四平市| 鄂托克旗| 柏乡县| 阜阳市| 北宁市| 若羌县| 剑川县| 会同县| 葫芦岛市| 吉林市| 花莲市| 南溪县| 常山县| 天全县| 镇远县| 商河县| 游戏| 贡山| 株洲县| 济源市| 句容市| 乌鲁木齐市| 高邑县| 蒙山县| 太仓市| 凤凰县| 正蓝旗|