派博傳思國際中心

標(biāo)題: Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay [打印本頁]

作者: Traction    時間: 2025-3-21 16:13
書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023影響因子(影響力)




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023影響因子(影響力)學(xué)科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023網(wǎng)絡(luò)公開度




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023被引頻次




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023被引頻次學(xué)科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023年度引用




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023年度引用學(xué)科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023讀者反饋




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023讀者反饋學(xué)科排名





作者: Cerumen    時間: 2025-3-21 22:04
978-3-031-43998-8The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
作者: NAUT    時間: 2025-3-22 02:54
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023978-3-031-43999-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
作者: Canvas    時間: 2025-3-22 06:25

作者: 美學(xué)    時間: 2025-3-22 11:17
Learned Alternating Minimization Algorithm for?Dual-Domain Sparse-View CT Reconstructioncture into the design of LAMA. We show that LAMA substantially reduces network complexity, improves memory efficiency and reconstruction accuracy, and is provably convergent for reliable reconstructions. Extensive numerical experiments demonstrate that LAMA outperforms existing methods by a wide margin on multiple benchmark CT datasets.
作者: Cupping    時間: 2025-3-22 15:10

作者: Bravura    時間: 2025-3-22 17:05

作者: acolyte    時間: 2025-3-22 22:01

作者: 伴隨而來    時間: 2025-3-23 03:46
CDiffMR: Can We Replace the?Gaussian Noise with?K-Space Undersampling for?Fast MRI?can be reused for reconstruction tasks with different undersampling rates. We demonstrated, through extensive numerical and visual experiments, that the proposed CDiffMR can achieve comparable or even superior reconstruction results than state-of-the-art models. Compared to the diffusion model-based
作者: HAUNT    時間: 2025-3-23 07:15
Learning Deep Intensity Field for?Extremely Sparse-View CBCT Reconstructionated by a fusion module for intensity estimation. Notably, thousands of points can be processed in parallel to improve efficiency during training and testing. In practice, we collect a knee CBCT dataset to train and evaluate DIF-Net. Extensive experiments show that our approach can reconstruct CBCT
作者: 高調(diào)    時間: 2025-3-23 12:01

作者: tariff    時間: 2025-3-23 16:15

作者: 經(jīng)典    時間: 2025-3-23 21:28
An Explainable Deep Framework: Towards Task-Specific Fusion for?Multi-to-One MRI Synthesisverage module; (2) highlight the area the network tried to refine during synthesizing by a task-specific attention module. We conduct experiments on the BraTS2021 dataset of 1251 subjects, and results on arbitrary sequence synthesis indicate that the proposed method achieves better performance than
作者: Tailor    時間: 2025-3-23 22:39

作者: evaculate    時間: 2025-3-24 05:27

作者: browbeat    時間: 2025-3-24 07:43

作者: Deference    時間: 2025-3-24 12:57
Noise Conditioned Weight Modulation for?Robust and?Generalizable Low Dose CT Denoisingc benchmark datasets show that the proposed dynamic convolutional layer significantly improves the denoising performance of the baseline network, as well as its robustness and generalization to previously unseen noise levels.
作者: 變化    時間: 2025-3-24 16:05
Low-Dose CT Image Super-Resolution Network with?Dual-Guidance Feature Distillation and?Dual-Path ConThe DGFM guides the network to concentrate the feature representation of the 3D inter-slice information in the region of interest (ROI) by introducing the average CT image and segmentation mask as complements of the original LDCT input. Meanwhile, the elaborate SAB utilizes the essential multi-scale
作者: 閑聊    時間: 2025-3-24 20:29

作者: Congeal    時間: 2025-3-25 00:00

作者: Bumptious    時間: 2025-3-25 04:19
Estimation of?3T MR Images from?1.5T Images Regularized with?Physics Based Constraintof 1.5T images and avoid the expensive requirements of example images and associated image registration. The LF and HF images are assumed to be related by a linear transformation (LT). The unknown HF image and unknown LT are estimated in alternate minimization framework. Further, a physics based con
作者: GRUEL    時間: 2025-3-25 08:27

作者: Complement    時間: 2025-3-25 13:34

作者: Desert    時間: 2025-3-25 17:01

作者: 腐爛    時間: 2025-3-25 21:58
Conference proceedings 2023I: Clinical applications – abdomen; clinicalapplications – breast; clinical applications – cardiac; clinical applications – dermatology; clinical applications – fetal imaging; clinical applications – lung; clinical applications – musculoskeletal; clinical applications – oncology; clinical applicatio
作者: 瑣碎    時間: 2025-3-26 01:06

作者: 溫順    時間: 2025-3-26 07:32

作者: 并排上下    時間: 2025-3-26 11:24
Sutanu Bera,Prabir Kumar Biswastand der Forschung wiedergibt. Es kann auch als OML-Consulting dienen, indem Entscheider und Praktiker OML anpassen und für ihre Anwendung einsetzen, um abzuw?gen, ob die Vorteile die Kosten aufwiegen..978-3-658-42505-0
作者: eardrum    時間: 2025-3-26 13:17

作者: 帶來墨水    時間: 2025-3-26 19:47

作者: engender    時間: 2025-3-26 22:42

作者: fringe    時間: 2025-3-27 03:27
n anhand einer Forschungsarbeit im Sozialbereich im ersten Teil die Erwartungen und Arbeitsmotive der aktuell jüngsten Generation von Sozialarbeitenden aufgezeigt und diskutiert. Anschlie?end liegt der Fokus auf der Arbeitgeberattraktivit?t. Was unternehmen Führungsverantwortliche ganz konkret, um j
作者: pacific    時間: 2025-3-27 06:08
Long Bai,Tong Chen,Yanan Wu,An Wang,Mobarakol Islam,Hongliang Renand von einschl?gigen Aufgabenstellungenund L?sungen. Das Werk gibt damit eine verst?ndliche Einführung in die Architektur von Betriebssystemen und eignet sich deshalb auch für die Lehre im Bachelorstudium.?Memory management, hardware management, process administration and interprocess communication
作者: EWE    時間: 2025-3-27 09:42
Luyi Han,Tianyu Zhang,Yunzhi Huang,Haoran Dou,Xin Wang,Yuan Gao,Chunyao Lu,Tao Tan,Ritse Mannand von einschl?gigen Aufgabenstellungenund L?sungen. Das Werk gibt damit eine verst?ndliche Einführung in die Architektur von Betriebssystemen und eignet sich deshalb auch für die Lehre im Bachelorstudium.?Memory management, hardware management, process administration and interprocess communication
作者: OPINE    時間: 2025-3-27 15:26
Haiyang Mao,Yanyang Wang,Hengyong Yu,Weiwen Wu,Jianjia Zhangligenz als Teil der Organisationskultur heraushebt. Um von der Konvergenz zu profitieren und damit eine verantwortungsvolle Gesellschaft zu schaffen, muss eine menschenzentrierte Sichtweise eingenommen werden. Das ist, was ?kosystem-Leadership ausmacht und ein aufbauendes normatives Ergebnis der dig
作者: epinephrine    時間: 2025-3-27 20:35

作者: 原諒    時間: 2025-3-28 00:07
Weitong Zhang,Berke Basaran,Qingjie Meng,Matthew Baugh,Jonathan Stelter,Phillip Lung,Uday Patel,Wenj in dieser Studie hergeleitet und ist der Kern der Methode. Die sich daraus ergebenden ?konomischen und ?kologischen Vorteile sind im Verh?ltnis zu den sich zeigenden Kosten und Energiebedarfen signifikant..978-3-658-43112-9978-3-658-43113-6Series ISSN 2567-0042 Series E-ISSN 2567-0352
作者: rods366    時間: 2025-3-28 04:49
Chi Ding,Qingchao Zhang,Ge Wang,Xiaojing Ye,Yunmei Chenh verbleiben auch unter Berücksichtigung dieser Merkmale genuine Besonderheiten Ostdeutschlands (Kontexteffekte). Vor diesem Hintergrund bildet Ostdeutschland eine sozial relevante Lebenswelt und ein kontroverses Identit?tsangebot.?.978-3-658-43484-7978-3-658-43485-4
作者: Myofibrils    時間: 2025-3-28 09:43

作者: GENUS    時間: 2025-3-28 10:36
0302-9743 nical applications – fetal imaging; clinical applications – lung; clinical applications – musculoskeletal; clinical applications – oncology; clinical applicatio978-3-031-43998-8978-3-031-43999-5Series ISSN 0302-9743 Series E-ISSN 1611-3349
作者: 有毛就脫毛    時間: 2025-3-28 16:33

作者: 疏遠(yuǎn)天際    時間: 2025-3-28 20:35
Zhiyun Song,Xin Wang,Xiangyu Zhao,Sheng Wang,Zhenrong Shen,Zixu Zhuang,Mengjun Liu,Qian Wang,Lichi Zkt der Resilienz das vorletzte Kapitel gewidmet, bevor sich ein Ausblick in die Zukunft anschlie?t.?.Die didaktische Struktur des Lehrbuchs enth?lt neben Lernzielen, Praxisbeispielen und Fallstudien sowie Lernv978-3-658-42338-4978-3-658-42339-1
作者: 分貝    時間: 2025-3-29 01:28
Hadrien Reynaud,Mengyun Qiao,Mischa Dombrowski,Thomas Day,Reza Razavi,Alberto Gomez,Paul Leeson,Bernhe study area for assessing this approach is Louisiana (United States), which – being spatially quite diverse – has been intensively shaped for more than a century by the activities of the petrochemical industr978-3-658-43395-6978-3-658-43396-3Series ISSN 2625-6991 Series E-ISSN 2625-7009
作者: Aviary    時間: 2025-3-29 05:46
Yongsheng Pan,Feihong Liu,Caiwen Jiang,Jiawei Huang,Yong Xia,Dinggang Shen
作者: enmesh    時間: 2025-3-29 07:31

作者: Fibroid    時間: 2025-3-29 11:23
Huidong Xie,Bo Zhou,Xiongchao Chen,Xueqi Guo,Stephanie Thorn,Yi-Hwa Liu,Ge Wang,Albert Sinusas,Chi L
作者: 注入    時間: 2025-3-29 18:16
CDiffMR: Can We Replace the?Gaussian Noise with?K-Space Undersampling for?Fast MRI?ave gained burgeoning interests as a novel group of deep learning-based generative methods. These methods seek to sample data points that belong to a target distribution from a Gaussian distribution, which has been successfully extended to MRI reconstruction. In this work, we proposed a Cold Diffusi
作者: Volatile-Oils    時間: 2025-3-29 19:50
Learning Deep Intensity Field for?Extremely Sparse-View CBCT Reconstructionsed generation methods represent the CT as discrete voxels, resulting in high memory requirements and limited spatial resolution due to the use of 3D decoders. In this paper, we formulate the CT volume as a continuous intensity field and develop a novel DIF-Net to perform high-quality CBCT reconstru
作者: syncope    時間: 2025-3-30 02:42

作者: Irksome    時間: 2025-3-30 07:36

作者: 言外之意    時間: 2025-3-30 09:12
An Explainable Deep Framework: Towards Task-Specific Fusion for?Multi-to-One MRI Synthesisvarious reasons. To address this issue, MRI synthesis is a potential solution. Recent deep learning-based methods have achieved good performance in combining multiple available sequences for missing sequence synthesis. Despite their success, these methods lack the ability to quantify the contributio
作者: Petechiae    時間: 2025-3-30 13:23
Structure-Preserving Synthesis: MaskGAN for Unpaired MR-CT Translation they often generate inaccurate mappings that shift the anatomy. This problem is further exacerbated when the images from the source and target modalities are heavily misaligned. Recently, current methods have aimed to address this issue by incorporating a supplementary segmentation network. Unfortu
作者: Bph773    時間: 2025-3-30 17:32
Alias-Free Co-modulated Network for?Cross-Modality Synthesis and?Super-Resolution of?MR Imagesed modality images and reduce slice thickness for magnetic resonance imaging (MRI), respectively. It is also desirable to build a network for simultaneous cross-modality and super-resolution (CMSR) so as to further bridge the gap between clinical scenarios and research studies. However, these works
作者: 揭穿真相    時間: 2025-3-30 23:48
Multi-perspective Adaptive Iteration Network for?Metal Artifact Reductionality of metal-corrupted image remains a challenge. Although the deep learning-based MAR methods have achieved impressive success, their interpretability and generalizability need further improvement. It is found that metal artifacts mainly concentrate in high frequency, and their distributions in t
作者: 壓迫    時間: 2025-3-31 01:32

作者: Tinea-Capitis    時間: 2025-3-31 07:07
Low-Dose CT Image Super-Resolution Network with?Dual-Guidance Feature Distillation and?Dual-Path Cons have been proposed to deal with those issues, but there still exists drawbacks: (1) convolution without guidance causes essential information not highlighted; (2) features with fixed-resolution lose the attention to multi-scale information; (3) single super-resolution module fails to balance detai
作者: CHARM    時間: 2025-3-31 10:34

作者: 歪曲道理    時間: 2025-3-31 14:19

作者: 狗舍    時間: 2025-3-31 20:44

作者: Self-Help-Group    時間: 2025-3-31 23:07
Feature-Conditioned Cascaded Video Diffusion Models for?Precise Echocardiogram Synthesisobustness, domain transfer, causal modelling, and operator training become approachable through synthetic data. Especially, heavily operator-dependant modalities like Ultrasound imaging require robust frameworks for image and video generation. So far, video generation has only been possible by provi
作者: 鋼盔    時間: 2025-4-1 03:49
DULDA: Dual-Domain Unsupervised Learned Descent Algorithm for?PET Image Reconstructionning paradigm, which rely heavily on the availability of high-quality training labels. In particular, the long scanning time required and high radiation exposure associated with PET scans make obtaining these labels impractical. In this paper, we propose a dual-domain unsupervised PET image reconstr
作者: FLINT    時間: 2025-4-1 06:08
Transformer-Based Dual-Domain Network for?Few-View Dedicated Cardiac SPECT Image Reconstructionsis of CVDs. The GE 530/570c dedicated cardiac SPECT scanners adopt a stationary geometry to simultaneously acquire 19 projections to increase sensitivity and achieve dynamic imaging. However, the limited amount of angular sampling negatively affects image quality. Deep learning methods can be implem
作者: PAN    時間: 2025-4-1 10:35
Learned Alternating Minimization Algorithm for?Dual-Domain Sparse-View CT Reconstruction a variational model for CT reconstruction with learnable nonsmooth nonconvex regularizers, which are parameterized as composite functions of deep networks in both image and sinogram domains. To minimize the objective of the model, we incorporate the smoothing technique and residual learning archite
作者: 極小量    時間: 2025-4-1 16:57
TriDo-Former: A Triple-Domain Transformer for Direct PET Reconstruction from Low-Dose Sinogramscting standard-dose PET (SPET) images from low-dose PET (LPET) sinograms directly. However, current methods often neglect boundaries during sinogram-to-image reconstruction, resulting in high-frequency distortion in the frequency domain and diminished or fuzzy edges in the reconstructed images. Furt




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
且末县| 米泉市| 庆云县| 湘潭市| 铅山县| 泗阳县| 漠河县| 秭归县| 云林县| 开阳县| 额济纳旗| 潮州市| 光山县| 龙州县| 隆昌县| 连山| 车致| 额济纳旗| 廊坊市| 湟中县| 唐河县| 沂南县| 金乡县| 湖南省| 土默特左旗| 台前县| 达拉特旗| 竹北市| 安仁县| 玛纳斯县| 漯河市| 阳江市| 尚义县| 彭山县| 长宁区| 增城市| 仙桃市| 汉阴县| 霍州市| 开原市| 衢州市|