派博傳思國際中心

標(biāo)題: Titlebook: Medical Image Computing and Computer Assisted Intervention – MICCAI 2023; 26th International C Hayit Greenspan,Anant Madabhushi,Russell Tay [打印本頁]

作者: Opiate    時間: 2025-3-21 18:31
書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023影響因子(影響力)




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023影響因子(影響力)學(xué)科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023網(wǎng)絡(luò)公開度




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023被引頻次




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023被引頻次學(xué)科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023年度引用




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023年度引用學(xué)科排名




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023讀者反饋




書目名稱Medical Image Computing and Computer Assisted Intervention – MICCAI 2023讀者反饋學(xué)科排名





作者: TAIN    時間: 2025-3-21 21:59

作者: Induction    時間: 2025-3-22 01:38
Linhao Qu,Yingfan Ma,Zhiwei Yang,Manning Wang,Zhijian SongEntwicklungstrends der Interessenorganisierung und?-vertretung im Feld kultureller-medialer Arbeit. Andererseits identifiziert die Studie im Forschungsstand zahlreiche offene Fragestellungen und Informationslücken, die abschlie?end als Forschungsdesiderat diskutiert und zur weiteren Exploration empf
作者: diabetes    時間: 2025-3-22 06:48
Fan Bai,Ke Yan,Xiaoyu Bai,Xinyu Mao,Xiaoli Yin,Jingren Zhou,Yu Shi,Le Lu,Max Q.-H. Meng jüngeren Entwicklungstrends der Interessenorganisierung und?-vertretung im Feld kultureller-medialer Arbeit. Andererseits identifiziert die Studie im Forschungsstand zahlreiche offene Fragestellungen und Informationslücken, die abschlie?end als Forschungsdesiderat diskutiert und zur weiteren Exploration empf978-3-658-40651-6978-3-658-40652-3
作者: Observe    時間: 2025-3-22 11:07
Han Liu,Hao Li,Xing Yao,Yubo Fan,Dewei Hu,Benoit M. Dawant,Vishwesh Nath,Zhoubing Xu,Ipek Oguz Themen, Konzepte und Erkenntnisse zur Organisationsberatung dargestellt und die folgenden Fragen beantwortet: Welche organisationalen Themen werden in Beratungsprozessen bearbeitet, wie wird in Beratungsprozessen vorgegangen, welche Funktionen und Rollen werden dort wahrgenommen, wie k?nnen Beratun
作者: Yag-Capsulotomy    時間: 2025-3-22 16:01

作者: 雕鏤    時間: 2025-3-22 19:34

作者: companion    時間: 2025-3-22 21:48

作者: 史前    時間: 2025-3-23 05:15

作者: buoyant    時間: 2025-3-23 06:15
estions, concepts and theoretical desiderata of a meaning-theoretical analysis of organizations, which are concerned with operative modes of the movement of meaning and typifying structures of the determination of meaning. Cognition and schema, social cognitions and culture, action practice and rule
作者: Obverse    時間: 2025-3-23 10:38

作者: ATOPY    時間: 2025-3-23 17:18

作者: Adherent    時間: 2025-3-23 18:38

作者: 珍奇    時間: 2025-3-24 02:15

作者: 發(fā)酵劑    時間: 2025-3-24 06:14

作者: annexation    時間: 2025-3-24 09:08
Wentao Zhang,Yujun Huang,Tong Zhang,Qingsong Zou,Wei-Shi Zheng,Ruixuan Wang
作者: Narcissist    時間: 2025-3-24 11:15

作者: crockery    時間: 2025-3-24 18:19

作者: FER    時間: 2025-3-24 20:35
Yuhan Zhang,Kun Huang,Cheng Chen,Qiang Chen,Pheng-Ann Heng
作者: Amnesty    時間: 2025-3-25 02:52
Zhifang Deng,Dandan Li,Shi Tan,Ying Fu,Xueguang Yuan,Xiaohong Huang,Yong Zhang,Guangwei Zhou
作者: bourgeois    時間: 2025-3-25 03:35
OpenAL: An Efficient Deep Active Learning Framework for?Open-Set Pathology Image Classificationification of pathology images show that OpenAL can significantly improve the query quality of target class samples and achieve higher performance than current state-of-the-art AL methods. Code is available at ..
作者: 碌碌之人    時間: 2025-3-25 10:07

作者: 瑪瑙    時間: 2025-3-25 12:44
COLosSAL: A Benchmark for?Cold-Start Active Learning for?3D Medical Image Segmentationark named COLosSAL by evaluating six cold-start AL strategies on five 3D medical image segmentation tasks from the public Medical Segmentation Decathlon collection. We perform a thorough performance analysis and explore important open questions for cold-start AL, such as the impact of budget on diff
作者: Aerophagia    時間: 2025-3-25 18:57
Continual Learning for?Abdominal Multi-organ and?Tumor Segmentationto accommodate newly emerging classes. These heads enable independent predictions for newly introduced and previously learned classes, effectively minimizing the impact of new classes on old ones during the course of continual learning. We further propose incorporating Contrastive Language-Image Pre
作者: Expurgate    時間: 2025-3-25 23:51
Incremental Learning for?Heterogeneous Structure Segmentation in?Brain Tumor MRIcal categories in a unified manner. Specifically, we first propose a divergence-aware dual-flow module with balanced rigidity and plasticity branches to decouple old and new tasks, which is guided by continuous batch renormalization. Then, a complementary pseudo-label training scheme with self-entro
作者: Outwit    時間: 2025-3-26 00:28

作者: 臆斷    時間: 2025-3-26 07:01
Adapter Learning in?Pretrained Feature Extractor for?Continual Learning of?Diseasesegory, task-specific adapter(s) can help the pretrained feature extractor more effectively extract discriminative features between diseases. In addition, a simple yet effective fine-tuning is applied to collaboratively fine-tune multiple task-specific heads such that outputs from different heads are
作者: 鋼筆尖    時間: 2025-3-26 11:49

作者: COST    時間: 2025-3-26 15:03
VISA-FSS: A Volume-Informed Self Supervised Approach for?Few-Shot 3D Segmentatione performance of 3D medical segmentation. To achieve this goal, we introduce a volume-aware task generation method that utilizes consecutive slices within a 3D image to construct more varied and realistic self-supervised FSS tasks during training. In addition, to provide pseudo-labels for consecutiv
作者: 戰(zhàn)勝    時間: 2025-3-26 19:04

作者: ectropion    時間: 2025-3-27 00:11

作者: 放肆的你    時間: 2025-3-27 05:01

作者: 不感興趣    時間: 2025-3-27 07:52

作者: Ergots    時間: 2025-3-27 12:48
FedGrav: An Adaptive Federated Aggregation Algorithm for?Multi-institutional Medical Image Segmentatnity is creatively proposed by considering both the differences of sample size on the client and the discrepancies among local models. It considers the client sample size as the mass of the local model and defines the model graph distance based on neural network topology. By calculating the affinity
作者: GUILE    時間: 2025-3-27 16:36
Category-Independent Visual Explanation for?Medical Deep Network Understandingour algorithm eliminates the need for categorical labels and modifications to the deep learning model. To evaluate the effectiveness of our proposed method, we compared it to seven state-of-the-art algorithms using the Chestx-ray8 dataset. Our approach achieved a 55% higher IoU measurement than clas
作者: chuckle    時間: 2025-3-27 19:38

作者: –FER    時間: 2025-3-27 22:44
Conference proceedings 2023rnational Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023, which was held in Vancouver, Canada, in October 2023..The 730 revised full papers presented were carefully reviewed and selected from a total of 2250 submissions. The papers are organized in the followin
作者: 沉積物    時間: 2025-3-28 05:20
0302-9743 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023, which was held in Vancouver, Canada, in October 2023..The 730 revised full papers presented were carefully reviewed and selected from a total of 2250 submissions. The papers are organized in th
作者: 在駕駛    時間: 2025-3-28 09:20

作者: Commonplace    時間: 2025-3-28 10:55
CXR-CLIP: Toward Large Scale Chest X-ray Language-Image Pre-traininglearning study-level characteristics of medical images and reports, respectively. Our model outperforms the state-of-the-art models trained under the same conditions. Also, enlarged dataset improve the discriminative power of our pre-trained model for classification, while sacrificing marginal retrieval performance. Code is available at ..
作者: 慌張    時間: 2025-3-28 16:48
eten. Hierzu entwickelt der Autor einen theoretischen Bezugsrahmen, der ein politikwissenschaftliches Grundverst?ndnis von "organisierten Interessen" mittels arbeits- und industriesoziologischen Perspektiven sch?rft und um überlegungen aus jüngeren Forschungsprogrammen zu bewegungsorientierten Erneu
作者: set598    時間: 2025-3-28 20:42

作者: REIGN    時間: 2025-3-29 02:39
Linhao Qu,Yingfan Ma,Zhiwei Yang,Manning Wang,Zhijian Songeten. Hierzu entwickelt der Autor einen theoretischen Bezugsrahmen, der ein politikwissenschaftliches Grundverst?ndnis von "organisierten Interessen" mittels arbeits- und industriesoziologischen Perspektiven sch?rft und um überlegungen aus jüngeren Forschungsprogrammen zu bewegungsorientierten Erneu
作者: 微不足道    時間: 2025-3-29 03:38

作者: adhesive    時間: 2025-3-29 08:25

作者: 大吃大喝    時間: 2025-3-29 15:28
Yixiao Zhang,Xinyi Li,Huimiao Chen,Alan L. Yuille,Yaoyao Liu,Zongwei Zhouelbst organisiert mit Organisationsformen wie Holakratie und Soziokratie Bei radikaler Selbstorganisation wird Autorit?t formal und organisationsweit an die Mitarbeitenden übertragen. Elsa Breit untersucht in diesem Buch, welche organisationalen Spannungen und Paradoxien bei der Transformation hin z
作者: miracle    時間: 2025-3-29 17:47
Xiaofeng Liu,Helen A. Shih,Fangxu Xing,Emiliano Santarnecchi,Georges El Fakhri,Jonghye Woo radikal selbst organisiert mit Organisationsformen wie Holakratie und Soziokratie Bei radikaler Selbstorganisation wird Autorit?t formal und organisationsweit an die Mitarbeitenden übertragen. Elsa Breit untersucht in diesem Buch, welche organisationalen Spannungen und Paradoxien bei der Transforma
作者: Blazon    時間: 2025-3-29 19:59

作者: Instrumental    時間: 2025-3-30 00:10
Jingna Qiu,Frauke Wilm,Mathias ?ttl,Maja Schlereth,Chang Liu,Tobias Heimann,Marc Aubreville,Katharinntstehungshintergrund, Argumentationsform und inhaltliche Aussage, m?gliche Anwendungsfelder, das zugrunde liegende Menschenbild sowie konzeptionelle Weiterentwicklungen dieser Theorien werden besprochen. Zuvor wird die Bedeutung von Theorien im Wissenschaftsbetrieb im Allgemeinen sowie in der Organ
作者: vitreous-humor    時間: 2025-3-30 07:01

作者: Manifest    時間: 2025-3-30 10:19
rom the thematic hook “organization and knowledge” to the various theoretical perspectives. The concept of knowledge has gained much popularity in the organizational discourse of recent years, both in the context of popular and practically oriented management and organizational doctrines as well as
作者: ARK    時間: 2025-3-30 14:58
Yiming Qian,Liangzhi Li,Huazhu Fu,Meng Wang,Qingsheng Peng,Yih Chung Tham,Chingyu Cheng,Yong Liu,Ricen und damit in der Verwendung von Macht kommt: Dabei gewinnt vor allem die Orientierung an Person und Gruppe massiv an Bedeutung. Auf eine Kurzformel gebracht bedeutet dies: Erfolgreiche Führung muss neben der Organisationsdynamik eine Expertise für die Gruppendynamik entwickeln. Allerdings stehen
作者: 不透明性    時間: 2025-3-30 19:31

作者: 細頸瓶    時間: 2025-3-31 00:28
SLPT: Selective Labeling Meets Prompt Tuning on?Label-Limited Lesion Segmentationbel-limited scenarios can lead to overfitting and suboptimal performance. Recently, prompt tuning has emerged as a more promising technique that introduces a few additional tunable parameters as prompts to a task-agnostic pre-trained model, and updates only these parameters using supervision from li
作者: 合并    時間: 2025-3-31 02:22
COLosSAL: A Benchmark for?Cold-Start Active Learning for?3D Medical Image Segmentationmance when trained on a fully-annotated dataset. However, data annotation is often a significant bottleneck, especially for 3D medical images. Active learning (AL) is a promising solution for efficient annotation but requires an initial set of labeled samples to start active selection. When the enti
作者: 刪減    時間: 2025-3-31 07:01

作者: Cholesterol    時間: 2025-3-31 11:41

作者: incisive    時間: 2025-3-31 16:30
PLD-AL: Pseudo-label Divergence-Based Active Learning in?Carotid Intima-Media Segmentation for?Ultraod that measures its thickness and roughness during routine ultrasound scans. Although advanced deep learning technology has shown promise in enabling automatic and accurate medical image segmentation, the lack of a large quantity of high-quality CIM labels may hinder the model training process. Act




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
武汉市| 兰溪市| 特克斯县| 朔州市| 石林| 定安县| 南陵县| 平安县| 辽源市| 清水县| 深水埗区| 大丰市| 长兴县| 婺源县| 汉川市| 麻栗坡县| 赤城县| 高要市| 图木舒克市| 丁青县| 师宗县| 屏东市| 苏尼特右旗| 翁牛特旗| 保山市| 威海市| 灵石县| 商城县| 浦城县| 沿河| 郓城县| 夏河县| 宿州市| 江城| 光泽县| 普宁市| 柏乡县| 闽侯县| 惠州市| 饶阳县| 博罗县|