標(biāo)題: Titlebook: Markov Processes for Stochastic Modeling; Masaaki Kijima Book 1997 M. Kijima 1997 Markov chain.Markov process.Parameter.algebra.modeling [打印本頁] 作者: 漏出 時間: 2025-3-21 17:10
書目名稱Markov Processes for Stochastic Modeling影響因子(影響力)
書目名稱Markov Processes for Stochastic Modeling影響因子(影響力)學(xué)科排名
書目名稱Markov Processes for Stochastic Modeling網(wǎng)絡(luò)公開度
書目名稱Markov Processes for Stochastic Modeling網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Markov Processes for Stochastic Modeling被引頻次
書目名稱Markov Processes for Stochastic Modeling被引頻次學(xué)科排名
書目名稱Markov Processes for Stochastic Modeling年度引用
書目名稱Markov Processes for Stochastic Modeling年度引用學(xué)科排名
書目名稱Markov Processes for Stochastic Modeling讀者反饋
書目名稱Markov Processes for Stochastic Modeling讀者反饋學(xué)科排名
作者: bizarre 時間: 2025-3-21 21:00
Discrete-time Markov chains,This chapter concerns discrete-time Markov chains defined on a finite or denumerably infinite state space .. The Markov chains under consideration are assumed to be homogeneous. We assume without loss of generality that the state space consists of nonnegative integers . = ?0,1,...,.”, where . < ∞ or . = ∞.作者: mechanism 時間: 2025-3-22 01:46 作者: 招待 時間: 2025-3-22 07:46
Review of matrix theory,In this section we discuss nonnegative matrices . = (..), i.e., .. ≥ 0 for all ., in which case we write . ≥ O. If .. > 0 for all ., we write . > O. For two matrices . and ., we write . ≥ . if and only if . ≥ O and . > . if and only if . ? . > O. Throughout this section, we assume that matrices are finite and square.作者: 博愛家 時間: 2025-3-22 10:53
https://doi.org/10.1007/978-1-4899-3132-0Markov chain; Markov process; Parameter; algebra; modeling作者: CRP743 時間: 2025-3-22 14:06 作者: cunning 時間: 2025-3-22 17:02
Total positivity,ere are indeed only ‘the tip of the iceberg’. The reader interested in a complete discussion of the theory of total positivity should consult Karlin (1968). Throughout this appendix, ., . and . represent either intervals of the real line . ≡ (?∞, ∞) or a countable or finite set of discrete values along ..作者: Mingle 時間: 2025-3-22 23:25
Introduction,or ‘chance’. Markov processes are a class of stochastic processes that are distinguished by the Markov property and have many applications in, for example, operations research, biology, engineering, and economics. In this chapter, we introduce some basic concepts of Markov processes.作者: 枕墊 時間: 2025-3-23 03:15
Monotone Markov chains,n matrices. A Markov chain {.. }is said to be increasing (decreasing, respectively) if .. ? .. (.. ? ..) for all n = 0,1, ..., where ? denotes an ordering relation in some stochastic sense, and in either case we call {.. }., or monotone for short. An . is such that, for two Markov chains {.. }and {.作者: 賠償 時間: 2025-3-23 05:50 作者: neutralize 時間: 2025-3-23 13:22
Generating functions and Laplace transforms,efore, we must start with the distribution function .(.). However, it is often true that working with some transformation of .(.) is much easier than working with .(.) itself. In this appendix, we discuss two important transformations, generating functions and Laplace transforms, the former being pa作者: 使腐爛 時間: 2025-3-23 15:37
Total positivity,ere are indeed only ‘the tip of the iceberg’. The reader interested in a complete discussion of the theory of total positivity should consult Karlin (1968). Throughout this appendix, ., . and . represent either intervals of the real line . ≡ (?∞, ∞) or a countable or finite set of discrete values al作者: affluent 時間: 2025-3-23 19:58 作者: 放棄 時間: 2025-3-23 22:27
tural relaxation time or viscosity is presented, namely:.andτ (.) = τ . exp[.. (.. — .)(....)/(. — ..)], where ..,..,.. and ρ. are VFT estimates of the ideal glass loci and .., .., .. and .. are estimates of the location of the absolute stability limit, partially hidden in the negative pressures dom作者: Alienated 時間: 2025-3-24 04:22 作者: AVOID 時間: 2025-3-24 08:46 作者: 陳舊 時間: 2025-3-24 12:05
,Birth—death processes,is is indeed a rich and important class in modeling a variety of phenomena not only in biology but also in, e.g., operations research, demography, economics and engineering. Typical examples of problems that can be formulated as birth-death processes are the following.作者: 剝皮 時間: 2025-3-24 16:45
Generating functions and Laplace transforms,working with .(.) itself. In this appendix, we discuss two important transformations, generating functions and Laplace transforms, the former being particularly useful for discrete random variables and the latter for nonnegative, absolutely continuous random variables.作者: 同音 時間: 2025-3-24 21:45
Monotone Markov chains,., we have .. ? .. for all .. Monotonicity properties are important both theoretically and practically because they lead to a variety of structural insights. In particular, they are a basic tool for deriving many useful inequalities in Markov chains for stochastic modeling.作者: Inculcate 時間: 2025-3-25 03:13
Book 1997ry distributions have no meaning. Or, even when the stationary distribution is of some importance, it is often dangerous to use the stationary result alone without knowing the transient behavior of the Markov chain. Not many books have paid much attention to this topic, despite its obvious importanc作者: neologism 時間: 2025-3-25 06:06 作者: 搬運工 時間: 2025-3-25 10:00 作者: SAGE 時間: 2025-3-25 15:44 作者: micronized 時間: 2025-3-25 16:08
6樓作者: Lacerate 時間: 2025-3-25 21:52
6樓作者: 誘拐 時間: 2025-3-26 01:25
7樓作者: 學(xué)術(shù)討論會 時間: 2025-3-26 06:39
7樓作者: Observe 時間: 2025-3-26 11:18
7樓作者: 詞匯記憶方法 時間: 2025-3-26 14:26
7樓作者: 排斥 時間: 2025-3-26 20:41
8樓作者: endocardium 時間: 2025-3-27 00:12
8樓作者: 無辜 時間: 2025-3-27 01:08
8樓作者: GUISE 時間: 2025-3-27 07:05
8樓作者: Cursory 時間: 2025-3-27 11:21
9樓作者: pacifist 時間: 2025-3-27 13:43
9樓作者: adequate-intake 時間: 2025-3-27 18:19
9樓作者: 說明 時間: 2025-3-28 01:13
9樓作者: 啜泣 時間: 2025-3-28 05:49
10樓作者: 存在主義 時間: 2025-3-28 06:32
10樓作者: 偏離 時間: 2025-3-28 13:03
10樓作者: 類型 時間: 2025-3-28 17:52
10樓