派博傳思國際中心

標(biāo)題: Titlebook: Machine Learning in Radiation Oncology; Theory and Applicati Issam El Naqa,Ruijiang Li,Martin J. Murphy Book 20151st edition Springer Inter [打印本頁]

作者: 我在爭斗志    時間: 2025-3-21 16:09
書目名稱Machine Learning in Radiation Oncology影響因子(影響力)




書目名稱Machine Learning in Radiation Oncology影響因子(影響力)學(xué)科排名




書目名稱Machine Learning in Radiation Oncology網(wǎng)絡(luò)公開度




書目名稱Machine Learning in Radiation Oncology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Machine Learning in Radiation Oncology被引頻次




書目名稱Machine Learning in Radiation Oncology被引頻次學(xué)科排名




書目名稱Machine Learning in Radiation Oncology年度引用




書目名稱Machine Learning in Radiation Oncology年度引用學(xué)科排名




書目名稱Machine Learning in Radiation Oncology讀者反饋




書目名稱Machine Learning in Radiation Oncology讀者反饋學(xué)科排名





作者: Anemia    時間: 2025-3-21 20:31

作者: 多山    時間: 2025-3-22 02:29

作者: BILL    時間: 2025-3-22 05:04

作者: 徹底檢查    時間: 2025-3-22 09:43
iction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.978-3-319-35464-4978-3-319-18305-3
作者: PANT    時間: 2025-3-22 16:33

作者: 得罪人    時間: 2025-3-22 20:20
Sangkyu Lee,Issam El Naqa, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided....In the pr978-3-540-32594-9Series ISSN 1615-1844 Series E-ISSN 1616-9522
作者: Morbid    時間: 2025-3-22 22:54

作者: 鐵塔等    時間: 2025-3-23 02:14

作者: Irritate    時間: 2025-3-23 08:56

作者: 關(guān)心    時間: 2025-3-23 11:29

作者: plasma-cells    時間: 2025-3-23 14:32

作者: Angioplasty    時間: 2025-3-23 18:11
Nathalie Japkowicz PhD,Mohak Shah PhDphases, pseudobinary systems, invariant equilibria, liquidus, solidus, and solvus surfaces, isothermal sections, temperature-composition sections, thermodynamics, materials properties and applications, and miscellanea. Finally, a detailed bibliography of all cited references is provided....In the pr
作者: MELD    時間: 2025-3-23 23:42

作者: 反感    時間: 2025-3-24 05:57
tional scientists.Also available online in www.springerLink..The present volume in the New Series of Landolt-B?rnstein provides critically evaluated data on phase diagrams, crystallographic and thermodynamic data of ternary alloy systems. Reliable phase diagrams provide materials scientists and engi
作者: 充滿人    時間: 2025-3-24 07:50
ta of ternary alloy systems. Reliable phase diagrams provide materials scientists and engineers with basic information important for fundamental research, development and optimization of materials. ...The often conflicting literature data have been critically evaluated by Materials Science Internati
作者: dendrites    時間: 2025-3-24 13:21
Issam El Naqa,Martin J. Murphyta of ternary alloy systems. Reliable phase diagrams provide materials scientists and engineers with basic information important for fundamental research, development and optimization of materials. ...The often conflicting literature data have been critically evaluated by Materials Science Internati
作者: Enteropathic    時間: 2025-3-24 17:06

作者: 污點(diǎn)    時間: 2025-3-24 21:35

作者: Harbor    時間: 2025-3-25 01:24
Nathalie Japkowicz PhD,Mohak Shah PhDta of ternary alloy systems. Reliable phase diagrams provide materials scientists and engineers with basic information important for fundamental research, development and optimization of materials. ...The often conflicting literature data have been critically evaluated by Materials Science Internati
作者: 襲擊    時間: 2025-3-25 03:22

作者: Harbor    時間: 2025-3-25 11:04
What Is Machine Learning?vironment. They are considered the working horse in the new era of the so-called big data. Techniques based on machine learning have been applied successfully in diverse fields ranging from pattern recognition, computer vision, spacecraft engineering, finance, entertainment, and computational biolog
作者: 爭論    時間: 2025-3-25 14:31
Computational Learning Theoryappropriate learning algorithm for a particular task. In this chapter, we present the two main theoretical frameworks—probably approximately correct (PAC) and Vapnik–Chervonenkis (VC) dimension—which allow us to answer questions such as which learning process we should select, what is the learning c
作者: Expurgate    時間: 2025-3-25 18:12

作者: Ptsd429    時間: 2025-3-25 23:54

作者: 水槽    時間: 2025-3-26 02:18
Informatics in Radiation Oncologyuestions and an abundance of data, machine learning technologies can be valuable. Available data includes handwritten notes on paper, imaging data available in digital formats, radiation treatment plan details, financial data, and multilevel multicenter databases, to name a few. Tools of various com
作者: garrulous    時間: 2025-3-26 05:04
Application of Machine Learning for Multicenter Learning treatment options, as more information is needed to make an informed decision. One of the methods is to use machine-learning techniques to develop predictive models. Although prediction models, embedded in clinical decision support systems (CDSSs), are the foreseen solution, developing/training suc
作者: 倫理學(xué)    時間: 2025-3-26 10:13

作者: daredevil    時間: 2025-3-26 14:04

作者: Mechanics    時間: 2025-3-26 19:14

作者: Adulate    時間: 2025-3-27 00:56
Knowledge-Based Treatment Planningm the treating team of a current pending case. This notion of using prior treatment planning information constitutes the underlying principle of the so-called knowledge-based treatment planning (KBTP). In this chapter, we will discuss KBTP and provide some examples highlighting its current status, t
作者: 榮幸    時間: 2025-3-27 03:18

作者: Serenity    時間: 2025-3-27 08:50

作者: 節(jié)省    時間: 2025-3-27 12:15

作者: 不如樂死去    時間: 2025-3-27 15:41
Treatment Planning Validationand established techniques for detecting errors in radiotherapy. We will discuss the rationale for using machine learning to detect large errors or outliers in radiotherapy treatment plans. As a concrete example, an automated error detection system for radiation treatment plans will be described. Th
作者: 積習(xí)難改    時間: 2025-3-27 18:04
Issam El Naqa,Ruijiang Li,Martin J. MurphyProvides a complete overview of the role of machine learning in radiation oncology and medical physics.Covers the use of machine learning in quality assurance, computer-aided detection, image-guided r
作者: 半導(dǎo)體    時間: 2025-3-27 23:38
http://image.papertrans.cn/m/image/620700.jpg
作者: 口音在加重    時間: 2025-3-28 05:12

作者: 健忘癥    時間: 2025-3-28 06:36

作者: 安心地散步    時間: 2025-3-28 14:26

作者: 鬼魂    時間: 2025-3-28 16:12
Artificial Neural Networks to Emulate and Compensate Breathing Motion During Radiation Therapycan be trained to model individual breathing patterns. Neural networks have proven quite effective in this capacity. This chapter describes the nature of the motion-compensated treatment problem and the issues in using a neural network to handle it.
作者: VICT    時間: 2025-3-28 20:53

作者: 激怒    時間: 2025-3-29 02:15
Informatics in Radiation Oncologyilable in digital formats, radiation treatment plan details, financial data, and multilevel multicenter databases, to name a few. Tools of various complexity for various goals are available. The following chapter aims to portray this domain and present a selection of available tools.
作者: intention    時間: 2025-3-29 05:11

作者: 碎石頭    時間: 2025-3-29 09:31

作者: progestogen    時間: 2025-3-29 14:58
Computational Learning Theoryapacity of the algorithm selected, and under which conditions is successful learning possible or impossible. Practical methods for selecting proper model complexity are presented using techniques based on information theory and statistical resampling.
作者: 泥沼    時間: 2025-3-29 17:12
Image-Guided Radiotherapy with Machine Learning we will present and discuss automatic and semiautomatic methods for CT prostate segmentation in the IGRT workflow. In the last section, we will present our extension of some recently developed machine learning approaches to segment the prostate in MR images.
作者: Tincture    時間: 2025-3-29 20:37

作者: Merited    時間: 2025-3-30 00:20
Treatment Planning Validatione technique was based on unsupervised machine learning, i.e., data clustering, and achieved over 90 % success rates in detecting outliers in over 1,000 treatment plans. Finally, future research directions in the clinical applications of machine learning for treatment planning validation will be briefly discussed.
作者: 烤架    時間: 2025-3-30 07:41
Book 20151st editioniotherapy; respiratory motion management; and treatment response modeling and outcome prediction. The book will be invaluable for students and residents in medical physics and radiation oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.
作者: ostensible    時間: 2025-3-30 10:12

作者: mortuary    時間: 2025-3-30 13:07

作者: Abrupt    時間: 2025-3-30 18:32
10樓
作者: 語源學(xué)    時間: 2025-3-30 21:48
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
淮滨县| 康定县| 威宁| 旺苍县| 平度市| 嘉鱼县| 新兴县| 泰宁县| 光山县| 穆棱市| 类乌齐县| 松潘县| 登封市| 东阳市| 沁源县| 宣化县| 安陆市| 嘉荫县| 郴州市| 天水市| 十堰市| 山西省| 罗城| 乐陵市| 富顺县| 句容市| 上犹县| 哈密市| 山西省| 和田县| 曲沃县| 德钦县| 历史| 馆陶县| 邢台县| 武安市| 佛坪县| 武定县| 梁河县| 灵山县| 北海市|