派博傳思國際中心

標題: Titlebook: Machine Learning in Medical Imaging; 11th International W Mingxia Liu,Pingkun Yan,Xiaohuan Cao Conference proceedings 2020 Springer Nature [打印本頁]

作者: CANTO    時間: 2025-3-21 18:22
書目名稱Machine Learning in Medical Imaging影響因子(影響力)




書目名稱Machine Learning in Medical Imaging影響因子(影響力)學科排名




書目名稱Machine Learning in Medical Imaging網(wǎng)絡公開度




書目名稱Machine Learning in Medical Imaging網(wǎng)絡公開度學科排名




書目名稱Machine Learning in Medical Imaging被引頻次




書目名稱Machine Learning in Medical Imaging被引頻次學科排名




書目名稱Machine Learning in Medical Imaging年度引用




書目名稱Machine Learning in Medical Imaging年度引用學科排名




書目名稱Machine Learning in Medical Imaging讀者反饋




書目名稱Machine Learning in Medical Imaging讀者反饋學科排名





作者: 使隔離    時間: 2025-3-21 23:29

作者: 蜿蜒而流    時間: 2025-3-22 00:45
A Novel fMRI Representation Learning Framework with GAN,the mapping between mind and brain. The proposed framework is evaluated on Human Connectome Project (HCP) task functional MRI (tfMRI) data. This novel framework proves that GAN can learn meaningful representations of tfMRI and promises better understanding of the brain function.
作者: 斷言    時間: 2025-3-22 05:43
3D Segmentation Networks for Excessive Numbers of Classes: Distinct Bone Segmentation in Upper Bodimodifications in network architecture, loss function, and data augmentation. As a result, we demonstrate the robustness of our method by automatically segmenting over one hundred distinct bones simultaneously in an end-to-end learnt fashion from a CT-scan.
作者: Arteriography    時間: 2025-3-22 09:18

作者: Decibel    時間: 2025-3-22 16:42
Segmentation to Label: Automatic Coronary Artery Labeling from Mask Parcellation,orrespondingly. Finally, a self-contained loss is proposed to supervise labeling process. At experiment section, we conduct comprehensive experiments on collected 526 CCTA scans and exhibit stable and promising results.
作者: Ganglion-Cyst    時間: 2025-3-22 17:35

作者: Organization    時間: 2025-3-22 21:47

作者: 準則    時間: 2025-3-23 02:50

作者: 純樸    時間: 2025-3-23 05:45
Error Attention Interactive Segmentation of Medical Image Through Matting and Fusion,e automatic segmentation to get higher accuracy for clinical use. Current methods usually transform user clicks to geodesic distance hint maps as guidance, then concatenate them with the raw image and coarse segmentation, and feed them into a refinement network. Such methods are insufficient in refi
作者: scrutiny    時間: 2025-3-23 09:45

作者: 軟弱    時間: 2025-3-23 16:04

作者: Airtight    時間: 2025-3-23 21:12

作者: Instrumental    時間: 2025-3-24 00:09
Super Resolution of Arterial Spin Labeling MR Imaging Using Unsupervised Multi-scale Generative Advly. However, since only a small portion of blood is labeled compared to the whole tissue volume, conventional ASL suffers from low signal-to-noise ratio (SNR), poor spatial resolution, and long acquisition time. In this paper, we proposed a super-resolution method based on a multi-scale generative a
作者: 偏離    時間: 2025-3-24 02:25

作者: GENRE    時間: 2025-3-24 08:42

作者: extinguish    時間: 2025-3-24 11:34

作者: Deadpan    時間: 2025-3-24 17:43

作者: hereditary    時間: 2025-3-24 21:06

作者: 救護車    時間: 2025-3-25 00:43

作者: 西瓜    時間: 2025-3-25 05:58

作者: embolus    時間: 2025-3-25 10:32
Anatomy-Aware Cardiac Motion Estimation,m cine MRI, which requires no special scanning procedure. However, current deep learning-based FT methods may result in unrealistic myocardium shapes since the learning is solely guided by image intensities without considering anatomy. On the other hand, motion estimation through learning is challen
作者: PRE    時間: 2025-3-25 12:49
Division and Fusion: Rethink Convolutional Kernels for 3D Medical Image Segmentation,elationship of image features, while 3D convolution layers are hard to train from scratch due to the limited size of medical image dataset. Employing more trainable parameters and complicated connections may improve the performance of 3D CNN, however, inducing extra computational burden at the same
作者: carbohydrate    時間: 2025-3-25 17:24

作者: 燈泡    時間: 2025-3-25 21:22

作者: ostracize    時間: 2025-3-26 04:13
tive view of their work.?This book makes some new conclusions about Arendt’s theory by emphasizing how her experience of the world as displayed in her archival materials impacted her thought. Some aspects of Arendt’s life have been examined in detail before, including the fact she was stateless as w
作者: Amenable    時間: 2025-3-26 07:10

作者: 不妥協(xié)    時間: 2025-3-26 10:03

作者: 字形刻痕    時間: 2025-3-26 14:34

作者: 創(chuàng)新    時間: 2025-3-26 18:16
Pingjun Chen,Xiao Chen,Eric Z. Chen,Hanchao Yu,Terrence Chen,Shanhui Sun many technology generations of semiconductor logic and memoLife-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluati
作者: 微生物    時間: 2025-3-27 01:02

作者: CRATE    時間: 2025-3-27 01:13
Zhenyuan Ning,Yu Zhang,Yongsheng Pan,Tao Zhong,Mingxia Liu,Dinggang Shen many technology generations of semiconductor logic and memoLife-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluati
作者: 著名    時間: 2025-3-27 05:45
Carlos Tor-Diez,Antonio Reyes Porras,Roger J. Packer,Robert A. Avery,Marius George Linguraru many technology generations of semiconductor logic and memoLife-Cycle Assessment of Semiconductors presents the first and thus far only available transparent and complete life cycle assessment of semiconductor devices. A lack of reliable semiconductor LCA data has been a major challenge to evaluati
作者: 瑣碎    時間: 2025-3-27 12:13

作者: Harrowing    時間: 2025-3-27 16:29

作者: hazard    時間: 2025-3-27 18:48
,Semi-supervised Segmentation with?Self-training Based on Quality Estimation and Refinement,truth mask or not at pixel level. Our method is evaluated on the established neuroblastoma(NB) and BraTS18 dataset and outperforms other state-of-the-art semi-supervised medical image segmentation methods. We can achieve a fully supervised performance while requiring .4x less annotation effort.
作者: 姑姑在炫耀    時間: 2025-3-27 23:55

作者: SOW    時間: 2025-3-28 04:01

作者: 加劇    時間: 2025-3-28 07:47

作者: inferno    時間: 2025-3-28 14:04

作者: 一加就噴出    時間: 2025-3-28 15:13
GSR-Net: Graph Super-Resolution Network for Predicting High-Resolution from Low-Resolution Functiondimensional space (encoding and decoding node attributes or sample features), our GSR-Net operates . on a single connectome: a fully connected graph where conventionally, a node denotes a brain region, nodes have no features, and edge weights denote brain connectivity strength between two regions of
作者: KEGEL    時間: 2025-3-28 21:24

作者: 腐爛    時間: 2025-3-29 01:16
Division and Fusion: Rethink Convolutional Kernels for 3D Medical Image Segmentation,at strengthens the spatial information of feature maps. During the fusion phase, all kernels are fused into one 3D kernel to reduce the parameters of deployed model. We extensively evaluated our DF mechanism on prostate ultrasound volume segmentation. The results demonstrate a consistent improvement
作者: GET    時間: 2025-3-29 06:26

作者: Spinous-Process    時間: 2025-3-29 08:07

作者: Adj異類的    時間: 2025-3-29 13:14

作者: 并排上下    時間: 2025-3-29 19:06

作者: Intact    時間: 2025-3-29 22:02

作者: 大吃大喝    時間: 2025-3-30 00:10

作者: 爭議的蘋果    時間: 2025-3-30 07:49

作者: incisive    時間: 2025-3-30 11:59

作者: 歌唱隊    時間: 2025-3-30 14:44
Jianan Cui,Kuang Gong,Paul Han,Huafeng Liu,Quanzheng Li
作者: 楓樹    時間: 2025-3-30 19:07
Yuxin Kang,Hansheng Li,Xin Han,Boju Pan,Yuan Li,Yan Jin,Qirong Bu,Lei Cui,Jun Feng,Lin Yang
作者: construct    時間: 2025-3-30 20:52
Yue Zhang,Jiong Wu,Yilong Liu,Yifan Chen,Ed X. Wu,Xiaoying Tang
作者: 創(chuàng)新    時間: 2025-3-31 02:23
0302-9743 l image analysis, computer-aided detection and diagnosis, multi-modality fusion, image reconstruction, image retrieval, cellular image analysis, molecular imaging, digital pathology, etc..978-3-030-59860-0978-3-030-59861-7Series ISSN 0302-9743 Series E-ISSN 1611-3349
作者: Hypopnea    時間: 2025-3-31 06:49

作者: Toxoid-Vaccines    時間: 2025-3-31 10:29

作者: Scleroderma    時間: 2025-3-31 14:02
Megi Isallari,Islem Rekik uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions.978-1-4899-9223-9978-1-4419-9988-7
作者: 江湖騙子    時間: 2025-3-31 18:01

作者: MANIA    時間: 2025-3-31 23:05
Xi Fang,Thomas Sanford,Baris Turkbey,Sheng Xu,Bradford J. Wood,Pingkun Yan uncertainty and sensitivity analysis of energy and global warming missions for CMOS logic devices, life cycle assessment of flash memory and life cycle assessment of DRAM. The information and conclusions discussed here will be highly relevant and useful to individuals and institutions.978-1-4899-9223-9978-1-4419-9988-7
作者: 厚顏    時間: 2025-4-1 02:16

作者: 牛的細微差別    時間: 2025-4-1 07:54

作者: macabre    時間: 2025-4-1 11:25
Uncertainty Quantification in Medical Image Segmentation with Normalizing Flows,




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
龙川县| 沾益县| 东台市| 汕尾市| 乃东县| 抚松县| 依兰县| 林口县| 文化| 大英县| 贡嘎县| 广宗县| 美姑县| 庄河市| 西平县| 抚州市| 类乌齐县| 定安县| 赣榆县| 奉化市| 绥阳县| 湄潭县| 许昌市| 会宁县| 邯郸市| 辛集市| 迁安市| 莒南县| 土默特右旗| 乃东县| 于都县| 永和县| 黄大仙区| 桂东县| 特克斯县| 连平县| 四川省| 霍林郭勒市| 莲花县| 兰考县| 鹤庆县|