派博傳思國(guó)際中心

標(biāo)題: Titlebook: Machine Learning for Engineers; Using data to solve Ryan G. McClarren Textbook 2021 Springer Nature Switzerland AG 2021 supervised learnin [打印本頁(yè)]

作者: 手套    時(shí)間: 2025-3-21 17:13
書(shū)目名稱Machine Learning for Engineers影響因子(影響力)




書(shū)目名稱Machine Learning for Engineers影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning for Engineers網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning for Engineers網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning for Engineers被引頻次




書(shū)目名稱Machine Learning for Engineers被引頻次學(xué)科排名




書(shū)目名稱Machine Learning for Engineers年度引用




書(shū)目名稱Machine Learning for Engineers年度引用學(xué)科排名




書(shū)目名稱Machine Learning for Engineers讀者反饋




書(shū)目名稱Machine Learning for Engineers讀者反饋學(xué)科排名





作者: Facet-Joints    時(shí)間: 2025-3-22 00:09
http://image.papertrans.cn/m/image/620619.jpg
作者: 打包    時(shí)間: 2025-3-22 03:19
https://doi.org/10.1007/978-3-030-70388-2supervised learning; unsupervised learning; Bayesian statistics; linear models; tree-based models; deep n
作者: NOMAD    時(shí)間: 2025-3-22 07:43
978-3-030-70390-5Springer Nature Switzerland AG 2021
作者: Consequence    時(shí)間: 2025-3-22 09:09
Textbook 2021merging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally “analog” disciplines—mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates th
作者: STEER    時(shí)間: 2025-3-22 16:49

作者: 職業(yè)拳擊手    時(shí)間: 2025-3-22 19:13
Recurrent Neural Networks for Time Series Dataut sequences are long. We then develop a more sophisticated network, the long short-term memory (LSTM) network to deal with longer sequences of data. Examples include predicting the frequency and shift of a signal and predicting the behavior of a cart-mounted pendulum
作者: 離開(kāi)可分裂    時(shí)間: 2025-3-23 00:24

作者: 可卡    時(shí)間: 2025-3-23 04:15

作者: VERT    時(shí)間: 2025-3-23 08:55
Finding Structure Within a Data Set: Data Reduction and Clustering clusters in the data set are found using distance measures in the independent variables, and t-SNE, where high-dimensional data are mapped into a low-dimensional (2 or 3 dimensions) data set to visualize the clusters. We close this chapter by applying supervised learning methods to hyper-spectral imaging of plant leaves.
作者: nettle    時(shí)間: 2025-3-23 13:20

作者: 紀(jì)念    時(shí)間: 2025-3-23 16:50

作者: 全神貫注于    時(shí)間: 2025-3-23 18:04

作者: DRILL    時(shí)間: 2025-3-24 00:59
The Landscape of Machine Learning: Supervised and Unsupervised Learning, Optimization, and Other Tope included to aid in discussions later in the text. The discussion of cross-validation includes k-fold cross-validation, leave-one-out cross-validation, and how to apply cross-validation to time series as well as problems with unknown parameters in the loss function.
作者: 拱形面包    時(shí)間: 2025-3-24 04:13

作者: debris    時(shí)間: 2025-3-24 09:22

作者: 暫時(shí)中止    時(shí)間: 2025-3-24 14:21
Textbook 2021est addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow,? demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally
作者: 減弱不好    時(shí)間: 2025-3-24 18:46

作者: 排出    時(shí)間: 2025-3-24 22:05
Linear Models for Regression and Classification example considering an object in free fall to then use regression to find the acceleration due to gravity. This example then leads to a discussion of least squares regression and various generalizations using logarithmic transforms. The topic of logistic regression is presented as a classification
作者: Peculate    時(shí)間: 2025-3-24 23:19

作者: 難理解    時(shí)間: 2025-3-25 07:03

作者: Neolithic    時(shí)間: 2025-3-25 09:52

作者: LIKEN    時(shí)間: 2025-3-25 11:55
Convolutional Neural Networks for Scientific Images and Other Large Data Setsd have a truly huge number of weight and bias parameters to fit during training. For such problems rather than considering each input to be independent, we take advantage of the fact that the input has structure, even if we do not know what that structure is, by using convolutions. In a convolution
作者: 貨物    時(shí)間: 2025-3-25 19:48

作者: nephritis    時(shí)間: 2025-3-25 23:54

作者: 伸展    時(shí)間: 2025-3-26 02:31
Reinforcement Learning with Policy Gradientse do not know the correct value for the dependent variable, as we would for a supervised learning problem, but we do have an objective function called a reward. We want our machine learning model output to maximize the reward given its inputs. Additionally, the model might need to produce a series o
作者: 失誤    時(shí)間: 2025-3-26 06:38
7樓
作者: 宣傳    時(shí)間: 2025-3-26 10:18
7樓
作者: 牙齒    時(shí)間: 2025-3-26 14:48
7樓
作者: 狂怒    時(shí)間: 2025-3-26 20:09
7樓
作者: 即席演說(shuō)    時(shí)間: 2025-3-27 00:51
8樓
作者: entreat    時(shí)間: 2025-3-27 03:46
8樓
作者: granite    時(shí)間: 2025-3-27 07:58
8樓
作者: 逢迎春日    時(shí)間: 2025-3-27 11:26
8樓
作者: 他日關(guān)稅重重    時(shí)間: 2025-3-27 16:12
9樓
作者: HAIL    時(shí)間: 2025-3-27 20:44
9樓
作者: EVICT    時(shí)間: 2025-3-27 23:59
9樓
作者: countenance    時(shí)間: 2025-3-28 05:14
9樓
作者: 離開(kāi)可分裂    時(shí)間: 2025-3-28 09:57
10樓
作者: 不能平靜    時(shí)間: 2025-3-28 10:25
10樓
作者: 說(shuō)笑    時(shí)間: 2025-3-28 15:23
10樓
作者: murmur    時(shí)間: 2025-3-28 19:00
10樓




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
镇平县| 姜堰市| 镶黄旗| 阳东县| 舞阳县| 呼玛县| 汶川县| 高清| 卢龙县| 青神县| 台中市| 调兵山市| 柯坪县| 柳河县| 阿拉善右旗| 洞口县| 化德县| 左贡县| 宜兰市| 筠连县| 奉新县| 腾冲县| 木里| 莱西市| 七台河市| 公主岭市| 清新县| 新乡市| 邹平县| 忻城县| 丰城市| 高碑店市| 阿克| 达日县| 湘西| 南部县| 卢氏县| 务川| 郎溪县| 司法| 新建县|