標(biāo)題: Titlebook: Machine Learning Risk Assessments in Criminal Justice Settings; Richard Berk Book 2019 Springer Nature Switzerland AG 2019 Risk Assessment [打印本頁] 作者: 無法仿效 時間: 2025-3-21 16:47
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings影響因子(影響力)
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings影響因子(影響力)學(xué)科排名
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings網(wǎng)絡(luò)公開度
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings被引頻次
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings被引頻次學(xué)科排名
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings年度引用
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings年度引用學(xué)科排名
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings讀者反饋
書目名稱Machine Learning Risk Assessments in Criminal Justice Settings讀者反饋學(xué)科排名
作者: Condyle 時間: 2025-3-21 23:25
Some Important Background Material,hat constructing statistical forecasts of criminal behavior is primarily a technical enterprise. But the forecasted risks inform real decisions by criminal justice officials and other stakeholders. As a result, a wide range of matters can arise, only some of which are technical. Although for exposit作者: HAVOC 時間: 2025-3-22 00:54
A Conceptual Introduction to Classification and Forecasting,fication problem. The goal is to assign classes to cases. There may be two classes or more than two. Machine learning is broadly considered before turning in later chapters to random forests as a preferred forecasting tool. There is no use of models and at best a secondary interest in explanation. M作者: 凹槽 時間: 2025-3-22 07:41
A More Formal Treatment of Classification and Forecasting,of the model used to characterize how the data were generated. That model is very different from the one used in conventional regression. Then, classification is considered followed by the estimation issues it raises. The bias-variance tradeoff is front and center. So is post-selection statistical i作者: Ambiguous 時間: 2025-3-22 10:46
Tree-Based Forecasting Methods,in criminal justice forecasting. The joint probability distribution model, data partitioning, and asymmetric costs should now be familiar. These features combine to make tree-based methods of recursive partitioning the fundamental building blocks for the machine learning procedures discussed. The ma作者: Fierce 時間: 2025-3-22 14:10 作者: Defiance 時間: 2025-3-22 17:42
Real Applications,applications that led to procedures adopted by criminal justice agencies. As such, they combine a number of technical matters with the practical realities of criminal justice decisions-making. For the reasons already addressed, random forests will be the machine learning method of choice with one ex作者: Postulate 時間: 2025-3-23 00:14 作者: ENNUI 時間: 2025-3-23 04:40 作者: mercenary 時間: 2025-3-23 07:02 作者: GRILL 時間: 2025-3-23 10:34 作者: 后來 時間: 2025-3-23 17:53
sschnitte wie die dabei mitgeteilten Informationen offensichtlich auf das Ereignis der festgestellten Delinquenz des Sohnes beziehen, das ihnen die Selbstverst?ndlichkeiten des Alltags hat problematisch werden lassen, so da? aufgrund dieser ?Unselbstverst?ndlichkeit“ bei den Müttern ein Interesse an作者: 干涉 時間: 2025-3-23 21:01
A Conceptual Introduction to Classification and Forecasting,hematics. Nevertheless, some readers may find the material challenging because a certain amount of statistical maturity must be assumed. Later chapters will use somewhat more formal expositional methods.作者: AGGER 時間: 2025-3-24 01:00
Tree-Based Forecasting Methods,ural nets and deep learning are not tree-based, they are also considered. Current claims about remarkable performance need to be dispassionately addressed, especially in comparison to tree-based methods.作者: ARM 時間: 2025-3-24 02:41 作者: Between 時間: 2025-3-24 08:27
hout, difficult issues are clearly explained, supported by m.This book puts in one place and in accessible form Richard Berk’s most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large dataset作者: 神經(jīng) 時間: 2025-3-24 12:47
Some Important Background Material,ional purposes the issues must be examined one at a time, in practice each should be considered as part of a whole. Decisions about one necessarily affect decisions about another. Implied is the need to consider tradeoffs between competing priorities. We begin with some rather broad concerns and gradually narrow the discussion.作者: 改變立場 時間: 2025-3-24 16:01 作者: acolyte 時間: 2025-3-24 20:59
Transparency, Accuracy and Fairness,ent tools being deployed. The need to know includes transparency, accuracy, and fairness. All three raise complicated issues in part because they interact with one another. Each will be addressed in turn. There will be no technical fix and no easy answers.作者: 絆住 時間: 2025-3-25 02:27 作者: Nomadic 時間: 2025-3-25 06:02
https://doi.org/10.1007/978-3-030-02272-3Risk Assessment; machine learning; risk forecasting; criminal justice; future dangerousness; fair algorit作者: hypertension 時間: 2025-3-25 10:50 作者: 不能強迫我 時間: 2025-3-25 12:30 作者: monopoly 時間: 2025-3-25 18:05
Real Applications,applications that led to procedures adopted by criminal justice agencies. As such, they combine a number of technical matters with the practical realities of criminal justice decisions-making. For the reasons already addressed, random forests will be the machine learning method of choice with one exception near the end of the chapter.作者: CLAY 時間: 2025-3-25 20:43
Implementation,iefly to porting new forecasting procedures to the settings in which they will be used. There are technical issues, but often the major obstacles are interpersonal and organizational. Implementation can be the most challenging and time consuming step that must be anticipated as the risk algorithm is being developed.作者: 顯而易見 時間: 2025-3-26 02:02 作者: catagen 時間: 2025-3-26 06:52
Getting Started, of risk assessment become convenient vehicles to raise broader issues around social inequality. There are, in short, always political considerations, ethical complexities, and judgement calls for which there can be no technical fix. The recent controversy about “racial bias” in risk instruments is 作者: 外星人 時間: 2025-3-26 11:27 作者: 小樣他閑聊 時間: 2025-3-26 14:13
Richard Berklten. Das schimmert z. B. in der eigenwilligen Bezeichnung von Sozialarbeitern als ?Sozialbetreuer“ (XI) durch. Mit einiger Plausibilit?t k?nnte vermutet werden, da? der Zwang, immer wieder neuen Amtspersonen die Familiensituation er?ffnen zu müssen, von den Müttern als belastend bzw. ?rgerlich empf作者: 流浪 時間: 2025-3-26 17:19
Richard Berkm sie aus der Sicht einer zentralen Figur im Bezie- hungsgefüge eines Strafgefangenen (immer ein Mindestma? an Kontakten unterstellt) jene Schwierigkeiten beschreibt und analy- siert, die typischerweise für die soziale Umgebung eines Strafgefan- genen im Verlauf seiner kriminellen Karriere auftreten作者: adulterant 時間: 2025-3-27 00:11
auf die Frage nach den Ursachen bzw. Gründen der amtlich festgestellten Kriminalit?t des Sohnes). Die von den Müttern in diesem Zusammenhang bevorzugte ?biographische Methode“ produziert in der Regel einen Bericht über soziale ?Auff?lligkeiten“ in beinahe allen Lebensbereichen in frühen Phasen der B作者: ambivalence 時間: 2025-3-27 02:01 作者: aquatic 時間: 2025-3-27 08:21 作者: humectant 時間: 2025-3-27 10:24
Machine Learning Risk Assessments in Criminal Justice Settings978-3-030-02272-3作者: Glycogen 時間: 2025-3-27 15:39
8樓作者: Asseverate 時間: 2025-3-27 20:14
8樓作者: transdermal 時間: 2025-3-28 01:32
9樓作者: Glucose 時間: 2025-3-28 02:58
9樓作者: nerve-sparing 時間: 2025-3-28 07:36
9樓作者: etidronate 時間: 2025-3-28 14:13
9樓作者: 密切關(guān)系 時間: 2025-3-28 15:33
10樓作者: Optimum 時間: 2025-3-28 19:47
10樓作者: Synapse 時間: 2025-3-28 23:21
10樓作者: infantile 時間: 2025-3-29 04:47
10樓