派博傳思國際中心

標題: Titlebook: Machine Learning Foundations; Supervised, Unsuperv Taeho Jo Book 2021 Springer Nature Switzerland AG 2021 Machine Learning.Supervised Learn [打印本頁]

作者: Amalgam    時間: 2025-3-21 17:17
書目名稱Machine Learning Foundations影響因子(影響力)




書目名稱Machine Learning Foundations影響因子(影響力)學科排名




書目名稱Machine Learning Foundations網(wǎng)絡公開度




書目名稱Machine Learning Foundations網(wǎng)絡公開度學科排名




書目名稱Machine Learning Foundations被引頻次




書目名稱Machine Learning Foundations被引頻次學科排名




書目名稱Machine Learning Foundations年度引用




書目名稱Machine Learning Foundations年度引用學科排名




書目名稱Machine Learning Foundations讀者反饋




書目名稱Machine Learning Foundations讀者反饋學科排名





作者: Rankle    時間: 2025-3-21 21:07
Taeho Jond student learning. Teacher knowledge cannot be separated from the subject matter being investigated, from how that subject matter can be represented for learners, from what we know about students’ thinking in specific domains, or from teacher beliefs (Fennema & Franke, 1992, S. 161).
作者: 避開    時間: 2025-3-22 03:26

作者: nonradioactive    時間: 2025-3-22 04:50

作者: 無法破譯    時間: 2025-3-22 11:47
Taeho Jond student learning. Teacher knowledge cannot be separated from the subject matter being investigated, from how that subject matter can be represented for learners, from what we know about students’ thinking in specific domains, or from teacher beliefs (Fennema & Franke, 1992, S. 161).
作者: Ferritin    時間: 2025-3-22 14:23
Taeho Jo Agens dieser Krankheiten ist lediglich bekannt, da? es die gew?hnlichen, bakteriendichten Filter passiert und unsichtbar ist. Der am besten zum Ziele führende Weg, die Gegenwart solcher Infektionserreger zu ermitteln, ist das Studium der durch sie in ihren Wirtstieren verursachten Gewebsver?nderung
作者: Promotion    時間: 2025-3-22 20:54
rn?hrter Zellen an Volumen abnehmen. Die Kerne zeigen h?ufig das Bild der Schrumpfung und Verklumpung des Chromatins (Pyknosis). Zellstoffwechselprodukte, wie Fett oder Glykogen k?nnen aufgebraucht und verschwunden sein. Auf der anderen Seite k?nnen bei der Atrophie Stoffwechselprodukte (Fette, Lipo
作者: delusion    時間: 2025-3-23 00:10

作者: NEXUS    時間: 2025-3-23 04:35

作者: OUTRE    時間: 2025-3-23 05:35

作者: Intuitive    時間: 2025-3-23 11:47

作者: 微塵    時間: 2025-3-23 17:20
Numerical Vectors the summarization on this chapter and the further discussions. This chapter is intended to characterize mathematically vectors and matrices as the foundation for understanding machine learning algorithms.
作者: upstart    時間: 2025-3-23 18:28

作者: 評論者    時間: 2025-3-23 23:21

作者: 閑蕩    時間: 2025-3-24 03:09
Instance Based LearningNN. We also present the modified versions of KNN as its variants. In this chapter, we assume that the KNN is the supervised learning algorithm, but we cover its unsupervised version in the next part..In Sect. 5.1, we provide the overview of the instance based learning, and in Sect. 5.2, we mention t
作者: 航海太平洋    時間: 2025-3-24 07:25
Probabilistic Learningo provide the background for understanding the chapter. We describe in detail some probabilistic classifiers such as Bayes Classifier and Naive Bayes as the popular and simple machine learning algorithms. We cover the Bayesian Learning as the more advanced learning methods than the two probabilistic
作者: 神經(jīng)    時間: 2025-3-24 14:26
Decision Treemples, entirely. In Sect. 7.4, we mention some variants of the decision tree, and in Sect. 7.5, we make the summarization on this chapter and the further discussions. This chapter is intended to describe the classification process, the learning process, and the variants of the decision tree.
作者: TIGER    時間: 2025-3-24 15:57

作者: 小隔間    時間: 2025-3-24 19:51
K Means Algorithme k means algorithm. In Sect. 10.4, we mention the variants of the k means algorithm, and in Sect. 10.5, we make the summarization on this chapter and the further discussions. This chapter is intended to describe the clustering process and the variants of the k means algorithm.
作者: tendinitis    時間: 2025-3-25 00:59

作者: DNR215    時間: 2025-3-25 05:21
Advanced Clusteringention the clustering governance as the management and the maintenance of existing clusters and, in Sect. 12.5, make the summarization on this chapter and the further discussions. This chapter covers the clustering evaluation metric, the clustering algorithms with their parameter turning, and the cl
作者: 時間等    時間: 2025-3-25 10:01

作者: 兇殘    時間: 2025-3-25 12:01

作者: 值得贊賞    時間: 2025-3-25 16:49
Temporal Learningrobabilistic model, called discrete Markov model. In Sect. 15.3, we describe the Hidden Markov Model as the temporal learning algorithm with the three problems. In Sect. 15.4, we mention the application of the Hidden Markov Model to the text topic analysis, and in Sect. 15.5, we make the summarizati
作者: 闖入    時間: 2025-3-25 21:46

作者: Increment    時間: 2025-3-26 01:51
Support Vector Machinen Sect. 8.4 and make the summarization on this chapter and the further discussions in Sect. 8.5. This chapter is intended to describe the SVM entirely with respect to the classification process, the learning process, and the variants.
作者: 致敬    時間: 2025-3-26 07:55

作者: Mechanics    時間: 2025-3-26 08:35

作者: Obvious    時間: 2025-3-26 15:22
Introductione able to apply the machine learning algorithms in the functional view. We describe briefly the four types of machine learning algorithms: the supervised learning, the unsupervised one, the reinforced one, and the semi-supervised one. We explore other areas which are related with the current area, c
作者: 有偏見    時間: 2025-3-26 19:45

作者: 蛙鳴聲    時間: 2025-3-27 00:09
Data Encodingsts of records is the typical raw data type, and it is relatively easy to encode them into numerical vectors. We mention the textual data as the most popular raw data type in the real world and study the process of indexing a text into a list of words and encoding it into a numerical vector. We also
作者: nauseate    時間: 2025-3-27 04:23
Simple Machine Learning Algorithms, it is assumed that the given task is a binary classification, and the regression or the multiple classification may be decomposed into binary classifications. Some simple machine learning algorithms, which are given as threshold rules or hypercubes, will be mentioned for helping understanding the
作者: Seizure    時間: 2025-3-27 06:36

作者: 同位素    時間: 2025-3-27 10:31
Probabilistic Learningobability theory, which is called Bayes Theorem, in order to provide the background for understanding the chapter. We describe in detail some probabilistic classifiers such as Bayes Classifier and Naive Bayes as the popular and simple machine learning algorithms. We cover the Bayesian Learning as th
作者: Anhydrous    時間: 2025-3-27 17:26

作者: theta-waves    時間: 2025-3-27 20:36
Support Vector Machiner classifier and the basis for deriving the SVM. In the main part, we cover the classification process, the constraints, and the learning process of the SVM. We survey some variants of the SVM that are expansions of the standard SVM. The SVM is applicable to a nonlinear classification problem, robus
作者: Lament    時間: 2025-3-28 00:30

作者: AWE    時間: 2025-3-28 06:02
K Means Algorithme KNN algorithm. With respect to the clustering process, we study the two main versions of the k means algorithm: the crisp k means algorithm and the fuzzy k means algorithm. The k medoid algorithm is mentioned as a variant of the k means algorithm, and the strategies of selecting representative ite
作者: BLANK    時間: 2025-3-28 10:00

作者: CLASP    時間: 2025-3-28 13:45

作者: OTHER    時間: 2025-3-28 16:18

作者: Urologist    時間: 2025-3-28 19:01
Semi-supervised Learningen Networks: the unsupervised version, the supervised version, and the semi-supervised version. Afterward, as another kind of semi-supervised learning algorithm, we present some models with the combinations of the supervised learning algorithm with the unsupervised learning algorithm. We explore som
作者: artless    時間: 2025-3-29 01:28
Temporal Learninground for understanding the Hidden Markov Model. In the main section, we describe the Hidden Markov Model that does the three cases: computing the probability of a state sequence, generating state sequence given an observation sequence, and estimating its parameters from a training set. We mention t
作者: 承認    時間: 2025-3-29 06:55

作者: expository    時間: 2025-3-29 07:58

作者: 積極詞匯    時間: 2025-3-29 13:00
Taeho Johe complexity and dynamic nature of knowledge has become recognized. Researching teacher knowledge means more than investigating the number of mathematics courses teachers have taken or the procedural knowledge of mathematics they pocess. Knowledge of mathematics teaching includes knowledge of pedag
作者: 輕打    時間: 2025-3-29 16:12
Taeho Johe complexity and dynamic nature of knowledge has become recognized. Researching teacher knowledge means more than investigating the number of mathematics courses teachers have taken or the procedural knowledge of mathematics they pocess. Knowledge of mathematics teaching includes knowledge of pedag
作者: 粉筆    時間: 2025-3-29 20:31
Taeho Johe complexity and dynamic nature of knowledge has become recognized. Researching teacher knowledge means more than investigating the number of mathematics courses teachers have taken or the procedural knowledge of mathematics they pocess. Knowledge of mathematics teaching includes knowledge of pedag
作者: 不要嚴酷    時間: 2025-3-30 02:58

作者: Rct393    時間: 2025-3-30 08:01
rkleinerung der einzelnen Zellelemente, ohne da? morphologische und chemische Ver?nderungen zugegen sein brauchen (einfache Atrophie), oder auf zahlenm??iger Verringerung der Zellen durch massenhaftes Zugrundegehen solcher (numerische Atrophie). Beide Vorg?nge laufen oft nebeneinander her. Die Folge
作者: 全神貫注于    時間: 2025-3-30 10:28

作者: famine    時間: 2025-3-30 16:22

作者: 悲觀    時間: 2025-3-30 17:54

作者: 付出    時間: 2025-3-30 22:38

作者: 惡臭    時間: 2025-3-31 03:41

作者: 不溶解    時間: 2025-3-31 05:18

作者: Nonporous    時間: 2025-3-31 12:36
10樓
作者: extinct    時間: 2025-3-31 13:38
10樓
作者: consent    時間: 2025-3-31 21:17
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
天峨县| 南和县| 获嘉县| 印江| 丰原市| 六安市| 大埔区| 绥中县| 万安县| 余姚市| 甘洛县| 扎鲁特旗| 且末县| 武鸣县| 织金县| 蓬溪县| 遂平县| 伊春市| 大姚县| 富宁县| 梁山县| 齐齐哈尔市| 体育| 理塘县| 洮南市| 玛多县| 无棣县| 新民市| 海南省| 土默特左旗| 闽侯县| 尖扎县| 娱乐| 乌拉特后旗| 无棣县| 新密市| 山东省| 团风县| 公安县| 株洲市| 徐汇区|