派博傳思國際中心

標(biāo)題: Titlebook: Linear and Nonlinear Aspects of Vortices; The Ginzburg-andau M Frank Pacard,Tristan Rivière Book 2000 Springer Science+Business Media New Y [打印本頁]

作者: Hoover    時(shí)間: 2025-3-21 16:42
書目名稱Linear and Nonlinear Aspects of Vortices影響因子(影響力)




書目名稱Linear and Nonlinear Aspects of Vortices影響因子(影響力)學(xué)科排名




書目名稱Linear and Nonlinear Aspects of Vortices網(wǎng)絡(luò)公開度




書目名稱Linear and Nonlinear Aspects of Vortices網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Linear and Nonlinear Aspects of Vortices被引頻次




書目名稱Linear and Nonlinear Aspects of Vortices被引頻次學(xué)科排名




書目名稱Linear and Nonlinear Aspects of Vortices年度引用




書目名稱Linear and Nonlinear Aspects of Vortices年度引用學(xué)科排名




書目名稱Linear and Nonlinear Aspects of Vortices讀者反饋




書目名稱Linear and Nonlinear Aspects of Vortices讀者反饋學(xué)科排名





作者: EVEN    時(shí)間: 2025-3-21 20:39

作者: 豪華    時(shí)間: 2025-3-22 04:03
Frank Pacard,Tristan Rivièretensor...An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson‘s differential geometric approach to Lie algebra t
作者: 你正派    時(shí)間: 2025-3-22 06:49
Book 2000l in a number of contexts in the nonlinear analysis of problems arising in geometry or mathematical physics. The material presented covers recent and original results by the authors, and will serve as an excellent classroom text or a valuable self-study resource..
作者: Antimicrobial    時(shí)間: 2025-3-22 10:47

作者: BROW    時(shí)間: 2025-3-22 16:45
hould acquaint readers with topolo- gical problems and concepts which arise from problems in geometry, analysis, and physics. Here, general topology (Ch. 2) is 978-90-481-4558-4978-94-017-1959-9Series ISSN 0927-4529
作者: 寬容    時(shí)間: 2025-3-22 20:35
,The Linearized Operator about the Approximate Solution ?,The aim of this chapter is to study the mapping properties of the operator .. which is defined to be the conjugate of the linearized Ginzburg-Landau operator about the approximate solution ?.
作者: Indebted    時(shí)間: 2025-3-23 01:12

作者: 吹牛大王    時(shí)間: 2025-3-23 03:11

作者: puzzle    時(shí)間: 2025-3-23 06:07

作者: 饑荒    時(shí)間: 2025-3-23 13:33
https://doi.org/10.1007/978-1-4612-1386-4Operator; Sobolev space; Vector field; geometry; linear optimization; mathematical physics; maximum princi
作者: stroke    時(shí)間: 2025-3-23 14:25

作者: LAIR    時(shí)間: 2025-3-23 19:05

作者: 靦腆    時(shí)間: 2025-3-24 00:21

作者: 眉毛    時(shí)間: 2025-3-24 02:56
Elliptic Operators in Weighted Sobolev Spaces,ription of the theory of elliptic operators in weighted Sobolev spaces but rather to provide simple proofs of some results that are needed in subsequent chapters. Further results can be found in the references already given in Chapter 2.
作者: cleaver    時(shí)間: 2025-3-24 09:29
978-1-4612-7125-3Springer Science+Business Media New York 2000
作者: 編輯才信任    時(shí)間: 2025-3-24 13:13

作者: 墊子    時(shí)間: 2025-3-24 15:38
Frank Pacard,Tristan Rivièreut go beyond the scope of a one semester lecture course. The first section builds on the material in Chap.?4 about geodesics and can be read directly after that chapter. It introduces conjugate points on geodesics and proves the Morse Index Theorem. This result is then used to show that every geodes
作者: helper-T-cells    時(shí)間: 2025-3-24 22:28
Frank Pacard,Tristan Rivièreowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point..The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, v
作者: 過份好問    時(shí)間: 2025-3-25 02:31

作者: ESPY    時(shí)間: 2025-3-25 03:56
tial geometry, mathematical analysis, differential equations, mechanics, functional analysis that correspond to the temporary state of these disciplines without involving topological concepts. Therefore, it is essential to acquaint students with topo- logical research methods already in the first un
作者: CROW    時(shí)間: 2025-3-25 09:13
Qualitative Aspects of Ginzburg-Landau Equations,is diffeomorphic to the unit ball .. ? ?., the functional has the following form:.Here the . is defined from Ω into ?, and A is a 1-form defined in Ω which represents the . in the material. The quantity |.|. is nothing but the density of cooper pairs of electrons that produce the superconductivity.
作者: flaggy    時(shí)間: 2025-3-25 12:36
,Elliptic Operators in Weighted H?lder Spaces,low up near each puncture .. at most at a certain prescribed rate. Then, we proceed to the investigation of the mapping properties of some class of elliptic operators which are defined between these spaces.
作者: 嚴(yán)重傷害    時(shí)間: 2025-3-25 19:47
,The Ginzburg-Landau Equation in ?,uation in all ?, and also .., the linearized Ginzburg-Landau operator about ... Next we carry out a careful study of all possible asymptotic behaviors of a solution of the homogeneous equation .. é = 0 both near the origin and near .. This yields a classification of all bounded solutions of .. é = 0
作者: 牛的細(xì)微差別    時(shí)間: 2025-3-25 21:27

作者: 以煙熏消毒    時(shí)間: 2025-3-26 01:08

作者: Condescending    時(shí)間: 2025-3-26 05:35

作者: dysphagia    時(shí)間: 2025-3-26 12:24
Elliptic Operators in Weighted Sobolev Spaces,ription of the theory of elliptic operators in weighted Sobolev spaces but rather to provide simple proofs of some results that are needed in subsequent chapters. Further results can be found in the references already given in Chapter 2.
作者: 忍耐    時(shí)間: 2025-3-26 13:23
Solving Uniqueness Questions,of the Ginzburg-Landau equation from Chapters 3 through 7 with the Pohozaev formula for the Ginzburg-Landau equation as established in Chapter 9. Indeed, using the machinery developed in Chapter 10, we are going to compare any sequence of solutions of the Ginzburg-Landau equation to the solutions co
作者: Memorial    時(shí)間: 2025-3-26 20:48
Qualitative Aspects of Ginzburg-Landau Equations,which represents the . in the material. The quantity |.|. is nothing but the density of cooper pairs of electrons that produce the superconductivity. Finally, .. denotes the . which is applied and then appears in the problem. The parameter . > 0 is usually called the ..
作者: clarify    時(shí)間: 2025-3-26 23:03

作者: 博愛家    時(shí)間: 2025-3-27 03:59
Families of Approximate Solutions with Prescribed Zero Set,nding to the zero set of our solutions, are critical points of the renormalized energy .. defined in (1.10). Finally, we derive some estimates which, in some sense, measure how close our approximate solution is from a true solution.
作者: legacy    時(shí)間: 2025-3-27 06:28
Existence of Ginzburg-Landau Vortices,by . and which is close to the approximate solution ? constructed in Chapter 5. To obtain this branch of solutions, we rephrase our problem as a fixed point problem. As a simple corollary of our construction, we will obtain a local uniqueness result for the solution of the Ginzburg-Landau equation.
作者: TEM    時(shí)間: 2025-3-27 11:30

作者: 落葉劑    時(shí)間: 2025-3-27 16:33
Book 2000perconductors, superfluids, and liquid crystals.? Building on the results presented by Bethuel, Brazis, and Helein, this current work further analyzes Ginzburg-Landau vortices with a particular emphasis on the uniqueness question. .The authors begin with a general presentation of the theory and then
作者: 我就不公正    時(shí)間: 2025-3-27 21:25

作者: 從容    時(shí)間: 2025-3-27 22:05
7樓
作者: 無能力    時(shí)間: 2025-3-28 04:07
7樓
作者: 金哥占卜者    時(shí)間: 2025-3-28 06:51
7樓
作者: 詩集    時(shí)間: 2025-3-28 11:37
7樓
作者: humectant    時(shí)間: 2025-3-28 17:53
8樓
作者: hazard    時(shí)間: 2025-3-28 19:15
8樓
作者: 彎曲道理    時(shí)間: 2025-3-29 02:35
8樓
作者: Trypsin    時(shí)間: 2025-3-29 05:03
8樓
作者: Carcinogen    時(shí)間: 2025-3-29 10:51
9樓
作者: Isometric    時(shí)間: 2025-3-29 11:42
9樓
作者: 思想流動(dòng)    時(shí)間: 2025-3-29 18:41
9樓
作者: OGLE    時(shí)間: 2025-3-29 23:32
9樓
作者: ungainly    時(shí)間: 2025-3-30 02:41
10樓
作者: immunity    時(shí)間: 2025-3-30 05:29
10樓
作者: AGGER    時(shí)間: 2025-3-30 11:54
10樓
作者: 人類    時(shí)間: 2025-3-30 14:09
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
灵山县| 平阳县| 武城县| 平安县| 平凉市| 莱州市| 昌吉市| 阳江市| 隆林| 十堰市| 靖州| 大名县| 七台河市| 彭山县| 太仆寺旗| 华容县| 贺州市| 道孚县| 开江县| 缙云县| 涞水县| 清新县| 丹东市| 故城县| 三亚市| 晋州市| 祥云县| 汉川市| 高雄市| 唐河县| 长岛县| 施甸县| 惠安县| 开远市| 巨鹿县| 盘锦市| 桐柏县| 全南县| 腾冲县| 南溪县| 临沧市|