標題: Titlebook: Lectures on the Geometry of Poisson Manifolds; Izu Vaisman Book 1994 Springer Basel AG 1994 Algebra.Algebroid.Theoretical physics.calculus [打印本頁] 作者: 滲漏 時間: 2025-3-21 18:02
書目名稱Lectures on the Geometry of Poisson Manifolds影響因子(影響力)
書目名稱Lectures on the Geometry of Poisson Manifolds影響因子(影響力)學科排名
書目名稱Lectures on the Geometry of Poisson Manifolds網絡公開度
書目名稱Lectures on the Geometry of Poisson Manifolds網絡公開度學科排名
書目名稱Lectures on the Geometry of Poisson Manifolds被引頻次
書目名稱Lectures on the Geometry of Poisson Manifolds被引頻次學科排名
書目名稱Lectures on the Geometry of Poisson Manifolds年度引用
書目名稱Lectures on the Geometry of Poisson Manifolds年度引用學科排名
書目名稱Lectures on the Geometry of Poisson Manifolds讀者反饋
書目名稱Lectures on the Geometry of Poisson Manifolds讀者反饋學科排名
作者: 秘密會議 時間: 2025-3-21 23:44
Izu Vaismaniable in a multivariate feedback system. Applications to financial and economic time series data are used to investigate the effectiveness of the new index by power contribution analysis, and confirm that applying our indexation method to markets with insufficient information, such as fast-growing o作者: Freeze 時間: 2025-3-22 01:26 作者: 擔憂 時間: 2025-3-22 04:57 作者: TOXIC 時間: 2025-3-22 09:00
An Introduction to Quantization,The present chapter is intended to provide some further important motivation for the study of the .-cohomology of Poisson manifolds. Namely, .-cohomological obstructions appear in the problem of the . of Poisson manifolds.作者: 機密 時間: 2025-3-22 13:15 作者: 光亮 時間: 2025-3-22 17:40
Poisson Calculus, calculus here. It is based on the possibility to extend the Poisson bracket to 1-forms, as it was discovered by several authors independently [GD], [MM], etc. (See more references in [KSM2].) We shall denote by Λ. the space of differential forms of degree κ on a differentiable manifold ..作者: 圣人 時間: 2025-3-23 00:17
Symplectic Realizations of Poisson Manifolds,efinition 7.2, and it turns out that this idea is fruitful and very important. It can be traced back to S. Lie [Lie], and, in our era, it appears in Karasev and Maslov [Kr], [KM1,2], then made precise by Weinstein [We3].作者: 賠償 時間: 2025-3-23 05:14
Poisson-Lie Groups, then, . [Dr1], [Dr2]. The latter are not really groups, but noncommutative algebras obtained by a deformation quantization (Chapter 6) of Poisson-Lie groups. From the purely geometric viewpoint it is also completely natural to define and study Poisson-Lie groups.作者: 圓錐 時間: 2025-3-23 07:32 作者: 犬儒主義者 時間: 2025-3-23 12:38 作者: 軍火 時間: 2025-3-23 16:38
0743-1643 Overview: 978-3-0348-9649-8978-3-0348-8495-2Series ISSN 0743-1643 Series E-ISSN 2296-505X 作者: Anal-Canal 時間: 2025-3-23 18:51 作者: 可耕種 時間: 2025-3-23 23:52
Progress in Mathematicshttp://image.papertrans.cn/l/image/583625.jpg作者: 移動 時間: 2025-3-24 06:08
Introduction,., .) ., and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main ingredients of symplectic manifolds. In fact, it can even be taken as the defining element of the structure (e.g., [Tl1]). But, the study 作者: Fabric 時間: 2025-3-24 07:01 作者: Ringworm 時間: 2025-3-24 13:51 作者: 哀求 時間: 2025-3-24 17:22 作者: Biofeedback 時間: 2025-3-24 20:32 作者: 表否定 時間: 2025-3-25 01:39 作者: Ostrich 時間: 2025-3-25 05:45
Realizations of Poisson Manifolds by Symplectic Groupoids,This theory can be seen as starting with the papers of Karasev and Maslov [KM1,2], and it was developed by A. Weinstein, and then by P. Dazord, G. Hector and others [We5–10], [CDW], [DH], [MW], [AD1,2], [AC2], etc. The problem of finding such realizations can be seen as a generalization of the famou作者: 原始 時間: 2025-3-25 09:54 作者: 有雜色 時間: 2025-3-25 15:03 作者: 運動性 時間: 2025-3-25 16:24 作者: Meander 時間: 2025-3-25 22:57 作者: 陰險 時間: 2025-3-26 03:20 作者: 哎呦 時間: 2025-3-26 06:57 作者: OGLE 時間: 2025-3-26 11:22 作者: 根除 時間: 2025-3-26 13:02
6樓作者: myelography 時間: 2025-3-26 20:04
6樓作者: Crohns-disease 時間: 2025-3-27 00:26
7樓作者: 功多汁水 時間: 2025-3-27 04:33
7樓作者: 冷淡一切 時間: 2025-3-27 07:44
7樓作者: Freeze 時間: 2025-3-27 10:43
7樓作者: 盲信者 時間: 2025-3-27 16:14
8樓作者: faultfinder 時間: 2025-3-27 19:18
8樓作者: 挫敗 時間: 2025-3-27 23:12
8樓作者: 哭得清醒了 時間: 2025-3-28 02:54
8樓作者: OMIT 時間: 2025-3-28 07:56
9樓作者: 潛移默化 時間: 2025-3-28 12:21
9樓作者: 確認 時間: 2025-3-28 16:59
9樓作者: oblique 時間: 2025-3-28 20:08
9樓作者: 粘土 時間: 2025-3-29 00:19
10樓作者: 種類 時間: 2025-3-29 06:34
10樓作者: 招待 時間: 2025-3-29 09:42
10樓作者: GLOOM 時間: 2025-3-29 11:36
10樓