派博傳思國際中心

標題: Titlebook: Lectures on the Geometry of Poisson Manifolds; Izu Vaisman Book 1994 Springer Basel AG 1994 Algebra.Algebroid.Theoretical physics.calculus [打印本頁]

作者: 滲漏    時間: 2025-3-21 18:02
書目名稱Lectures on the Geometry of Poisson Manifolds影響因子(影響力)




書目名稱Lectures on the Geometry of Poisson Manifolds影響因子(影響力)學科排名




書目名稱Lectures on the Geometry of Poisson Manifolds網絡公開度




書目名稱Lectures on the Geometry of Poisson Manifolds網絡公開度學科排名




書目名稱Lectures on the Geometry of Poisson Manifolds被引頻次




書目名稱Lectures on the Geometry of Poisson Manifolds被引頻次學科排名




書目名稱Lectures on the Geometry of Poisson Manifolds年度引用




書目名稱Lectures on the Geometry of Poisson Manifolds年度引用學科排名




書目名稱Lectures on the Geometry of Poisson Manifolds讀者反饋




書目名稱Lectures on the Geometry of Poisson Manifolds讀者反饋學科排名





作者: 秘密會議    時間: 2025-3-21 23:44
Izu Vaismaniable in a multivariate feedback system. Applications to financial and economic time series data are used to investigate the effectiveness of the new index by power contribution analysis, and confirm that applying our indexation method to markets with insufficient information, such as fast-growing o
作者: Freeze    時間: 2025-3-22 01:26

作者: 擔憂    時間: 2025-3-22 04:57

作者: TOXIC    時間: 2025-3-22 09:00
An Introduction to Quantization,The present chapter is intended to provide some further important motivation for the study of the .-cohomology of Poisson manifolds. Namely, .-cohomological obstructions appear in the problem of the . of Poisson manifolds.
作者: 機密    時間: 2025-3-22 13:15

作者: 光亮    時間: 2025-3-22 17:40
Poisson Calculus, calculus here. It is based on the possibility to extend the Poisson bracket to 1-forms, as it was discovered by several authors independently [GD], [MM], etc. (See more references in [KSM2].) We shall denote by Λ. the space of differential forms of degree κ on a differentiable manifold ..
作者: 圣人    時間: 2025-3-23 00:17
Symplectic Realizations of Poisson Manifolds,efinition 7.2, and it turns out that this idea is fruitful and very important. It can be traced back to S. Lie [Lie], and, in our era, it appears in Karasev and Maslov [Kr], [KM1,2], then made precise by Weinstein [We3].
作者: 賠償    時間: 2025-3-23 05:14
Poisson-Lie Groups, then, . [Dr1], [Dr2]. The latter are not really groups, but noncommutative algebras obtained by a deformation quantization (Chapter 6) of Poisson-Lie groups. From the purely geometric viewpoint it is also completely natural to define and study Poisson-Lie groups.
作者: 圓錐    時間: 2025-3-23 07:32

作者: 犬儒主義者    時間: 2025-3-23 12:38

作者: 軍火    時間: 2025-3-23 16:38
0743-1643 Overview: 978-3-0348-9649-8978-3-0348-8495-2Series ISSN 0743-1643 Series E-ISSN 2296-505X
作者: Anal-Canal    時間: 2025-3-23 18:51

作者: 可耕種    時間: 2025-3-23 23:52
Progress in Mathematicshttp://image.papertrans.cn/l/image/583625.jpg
作者: 移動    時間: 2025-3-24 06:08
Introduction,., .) ., and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main ingredients of symplectic manifolds. In fact, it can even be taken as the defining element of the structure (e.g., [Tl1]). But, the study
作者: Fabric    時間: 2025-3-24 07:01

作者: Ringworm    時間: 2025-3-24 13:51

作者: 哀求    時間: 2025-3-24 17:22

作者: Biofeedback    時間: 2025-3-24 20:32

作者: 表否定    時間: 2025-3-25 01:39

作者: Ostrich    時間: 2025-3-25 05:45
Realizations of Poisson Manifolds by Symplectic Groupoids,This theory can be seen as starting with the papers of Karasev and Maslov [KM1,2], and it was developed by A. Weinstein, and then by P. Dazord, G. Hector and others [We5–10], [CDW], [DH], [MW], [AD1,2], [AC2], etc. The problem of finding such realizations can be seen as a generalization of the famou
作者: 原始    時間: 2025-3-25 09:54

作者: 有雜色    時間: 2025-3-25 15:03

作者: 運動性    時間: 2025-3-25 16:24

作者: Meander    時間: 2025-3-25 22:57

作者: 陰險    時間: 2025-3-26 03:20

作者: 哎呦    時間: 2025-3-26 06:57

作者: OGLE    時間: 2025-3-26 11:22

作者: 根除    時間: 2025-3-26 13:02
6樓
作者: myelography    時間: 2025-3-26 20:04
6樓
作者: Crohns-disease    時間: 2025-3-27 00:26
7樓
作者: 功多汁水    時間: 2025-3-27 04:33
7樓
作者: 冷淡一切    時間: 2025-3-27 07:44
7樓
作者: Freeze    時間: 2025-3-27 10:43
7樓
作者: 盲信者    時間: 2025-3-27 16:14
8樓
作者: faultfinder    時間: 2025-3-27 19:18
8樓
作者: 挫敗    時間: 2025-3-27 23:12
8樓
作者: 哭得清醒了    時間: 2025-3-28 02:54
8樓
作者: OMIT    時間: 2025-3-28 07:56
9樓
作者: 潛移默化    時間: 2025-3-28 12:21
9樓
作者: 確認    時間: 2025-3-28 16:59
9樓
作者: oblique    時間: 2025-3-28 20:08
9樓
作者: 粘土    時間: 2025-3-29 00:19
10樓
作者: 種類    時間: 2025-3-29 06:34
10樓
作者: 招待    時間: 2025-3-29 09:42
10樓
作者: GLOOM    時間: 2025-3-29 11:36
10樓




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
太湖县| 乌兰浩特市| 应用必备| 荣成市| 延吉市| 嘉善县| 江山市| 怀宁县| 库尔勒市| 襄城县| 巢湖市| 夏邑县| 雷州市| 东安县| 海阳市| 丹江口市| 昌宁县| 舟曲县| 彭阳县| 玛曲县| 黄浦区| 乌鲁木齐县| 明光市| 辛集市| 汉寿县| 杨浦区| 皋兰县| 宜昌市| 宁河县| 长岭县| 泸溪县| 宁强县| 安义县| 吕梁市| 随州市| 儋州市| 濉溪县| 汕头市| 阳山县| 富源县| 南和县|