標(biāo)題: Titlebook: Lectures on Vanishing Theorems; Hélène Esnault,Eckart Viehweg Book 1992 Springer Basel AG 1992 Divisor.algebra.algebraic geometry.cohomolo [打印本頁] 作者: 強烈的愿望 時間: 2025-3-21 19:06
書目名稱Lectures on Vanishing Theorems影響因子(影響力)
書目名稱Lectures on Vanishing Theorems影響因子(影響力)學(xué)科排名
書目名稱Lectures on Vanishing Theorems網(wǎng)絡(luò)公開度
書目名稱Lectures on Vanishing Theorems網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Lectures on Vanishing Theorems被引頻次
書目名稱Lectures on Vanishing Theorems被引頻次學(xué)科排名
書目名稱Lectures on Vanishing Theorems年度引用
書目名稱Lectures on Vanishing Theorems年度引用學(xué)科排名
書目名稱Lectures on Vanishing Theorems讀者反饋
書目名稱Lectures on Vanishing Theorems讀者反饋學(xué)科排名
作者: Keratectomy 時間: 2025-3-21 20:34
Hélène Esnault,Eckart Viehwegnd of 1979. The present Second Supplement updates the Index by inclusion of the volumes which appeared up to the end of 1987. With this Second Supplement all compounds described in the Gmelin Handbook of Inorganic Chemistry in the period between 1924 and 1987 can be located. The basic structure of t作者: Perigee 時間: 2025-3-22 00:28
Hélène Esnault,Eckart Viehwegnd of 1979. The present Second Supplement updates the Index by inclusion of the volumes which appeared up to the end of 1987. With this Second Supplement all compounds described in the Gmelin Handbook of Inorganic Chemistry in the period between 1924 and 1987 can be located. The basic structure of t作者: sacrum 時間: 2025-3-22 05:33 作者: CURB 時間: 2025-3-22 11:51 作者: 使激動 時間: 2025-3-22 15:11 作者: 描繪 時間: 2025-3-22 18:20
Vanishing theorems for invertible sheaves,egral parts of ?-divisors” from (3.2), combined with (4.2). Needless to say that in all those corollaries of (5.1) one loses some information and that it might be more reasonable to try to work with (5.1) or correspondingly with (6.2) directly, whenever it is possible.作者: 懸掛 時間: 2025-3-22 22:43
Some applications of vanishing theorems,be useful for applications in higherdimensional complex projective geometry. We will not be able in these notes to include an outline of the Iitaka-Mori classification of threefolds, and the reader interested in this direction is invited to regard S. Mori’s beautiful survey [46].作者: squander 時間: 2025-3-23 04:26 作者: Memorial 時間: 2025-3-23 05:31
978-3-7643-2822-1Springer Basel AG 1992作者: craven 時間: 2025-3-23 10:21
Lectures on Vanishing Theorems978-3-0348-8600-0Series ISSN 1661-237X Series E-ISSN 2296-5041 作者: 忍受 時間: 2025-3-23 14:05 作者: Tincture 時間: 2025-3-23 18:15 作者: Ceramic 時間: 2025-3-23 23:47 作者: 溫和女孩 時間: 2025-3-24 05:45
https://doi.org/10.1007/978-3-0348-8600-0Divisor; algebra; algebraic geometry; cohomology; deformation theory; manifold作者: 反饋 時間: 2025-3-24 10:32 作者: 背信 時間: 2025-3-24 13:47
,Kodaira’s vanishing theorem, a general discussion,Let . be a projective manifold defined over an algebraically closed field . and let . be an invertible sheaf on .. By explicit calculations of the ?echcohomology of the projective space one obtains.作者: synovial-joint 時間: 2025-3-24 16:01 作者: Veneer 時間: 2025-3-24 22:22 作者: 公式 時間: 2025-3-25 01:51
Characteristic , methods: Lifting of schemes,Up to this point we did not prove the degeneration of the Hodge spectral sequence used in (3.2). Before doing so in Lecture 10 let us first recall what we want to prove.作者: 處理 時間: 2025-3-25 06:08
The Frobenius and its liftings,Everything in this lecture is either elementary or taken from [12].作者: invade 時間: 2025-3-25 08:04
The proof of Deligne and Illusie [12],We keep the assumptions from Lectures 8 and 9. Hence . is supposed to be a smooth noetherian .-scheme, . ? . a .-normal crossing divisor, and . is a noetherian scheme over ?. which admits a lifting . to ?/.. as well as a lifting .of the absolute Frobenius ...作者: gastritis 時間: 2025-3-25 14:38 作者: OFF 時間: 2025-3-25 15:58
Hélène Esnault,Eckart Viehwegg". Whereas the Handbook itself will continue to appear in printed form, the present Second Supplement of the Index is intended to be the last one issued in print. The cumulated contents of the Index and its Supplements are contained in the Gmelin Formula Index (GFI) database which is available to the scienti978-3-662-07524-1作者: venous-leak 時間: 2025-3-25 23:50 作者: HAIL 時間: 2025-3-26 04:05
Hélène Esnault,Eckart Viehwegs the Handbook itself will continue to appear in printed form, the present Second Supplement of the Index is intended to be the last one issued in print. The cumulated contents of the Index and its Supplements are contained in the Gmelin Formula Index (GFI) database which is available to the scienti作者: Folklore 時間: 2025-3-26 05:21 作者: FRONT 時間: 2025-3-26 11:16
1661-237X ow to deduce the degeneration of the Hodge to de Rham spectral sequence in characteristic zero, as well, a re- sult which again could only be obtained by analyt978-3-7643-2822-1978-3-0348-8600-0Series ISSN 1661-237X Series E-ISSN 2296-5041 作者: Bureaucracy 時間: 2025-3-26 15:46 作者: considerable 時間: 2025-3-26 20:37
Book 1992gy below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre‘s GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained for projecti作者: In-Situ 時間: 2025-3-26 22:12 作者: CHARM 時間: 2025-3-27 01:15
1661-237X o cohomology below the dimension of X and its generalization, due to Y. Akizuki and S. Nakano, have been proven originally by methods from differential geometry ([39J and [1]). Even if, due to J.P. Serre‘s GAGA-theorems [56J and base change for field extensions the algebraic analogue was obtained fo作者: 高興一回 時間: 2025-3-27 06:43
6樓作者: 漸變 時間: 2025-3-27 11:42
6樓作者: 從屬 時間: 2025-3-27 17:23
6樓作者: Retrieval 時間: 2025-3-27 19:37
6樓作者: oblique 時間: 2025-3-27 23:25
7樓作者: 乳白光 時間: 2025-3-28 05:25
7樓作者: glamor 時間: 2025-3-28 06:50
7樓作者: corn732 時間: 2025-3-28 13:28
7樓作者: 仇恨 時間: 2025-3-28 15:30
8樓作者: 小鹿 時間: 2025-3-28 18:52
8樓作者: 出處 時間: 2025-3-29 02:24
8樓作者: 螢火蟲 時間: 2025-3-29 03:23
8樓作者: 聾子 時間: 2025-3-29 08:44
9樓作者: Euphonious 時間: 2025-3-29 12:19
9樓作者: 贊美者 時間: 2025-3-29 16:50
9樓作者: 身體萌芽 時間: 2025-3-29 22:34
9樓作者: Organonitrile 時間: 2025-3-30 03:17
10樓作者: eucalyptus 時間: 2025-3-30 04:55
10樓作者: 祝賀 時間: 2025-3-30 08:18
10樓作者: 有幫助 時間: 2025-3-30 13:38
10樓