派博傳思國際中心

標(biāo)題: Titlebook: K?hler Immersions of K?hler Manifolds into Complex Space Forms; Andrea Loi,Michela Zedda Book 2018 Springer Nature Switzerland AG 2018 Com [打印本頁]

作者: CLOG    時間: 2025-3-21 18:04
書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms影響因子(影響力)




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms影響因子(影響力)學(xué)科排名




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms網(wǎng)絡(luò)公開度




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms被引頻次




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms被引頻次學(xué)科排名




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms年度引用




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms年度引用學(xué)科排名




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms讀者反饋




書目名稱K?hler Immersions of K?hler Manifolds into Complex Space Forms讀者反饋學(xué)科排名





作者: Parallel    時間: 2025-3-21 23:05

作者: 地牢    時間: 2025-3-22 00:23
Andrea Loi,Michela Zeddaand a detailed bibliography make it easy to go beyond the presented material if desired..From the reviews of the first edition:.?“…readers are likely to regard the book as an ideal reference. Indeed the monogra978-3-030-61873-5978-3-030-61871-1Series ISSN 2199-3130 Series E-ISSN 2199-3149
作者: 按等級    時間: 2025-3-22 08:03

作者: Nonthreatening    時間: 2025-3-22 11:34

作者: Pessary    時間: 2025-3-22 15:31
,Homogeneous K?hler Manifolds,eorem 3.2), will be applied in Sect. 3.2 to classify homogeneous K?hler manifolds admitting a K?hler immersion into . or ., .?≤. (Theorem 3.3).In the last three sections we consider K?hler immersions of homogeneous K?hler manifolds into ., .?≤.. The general case is discussed in Sect. 3.3, while in S
作者: 水槽    時間: 2025-3-22 19:49
,K?hler–Einstein Manifolds,s into complex space forms. We begin describing in the next section the work of Umehara (Tohoku Math J 39:385–389, 1987) which completely classifies K?hler–Einstein manifolds admitting a K?hler immersion into the finite dimensional complex hyperbolic or flat space. In Sect. 4.3 we summarize what is
作者: Humble    時間: 2025-3-22 22:39

作者: HILAR    時間: 2025-3-23 02:10

作者: 學(xué)術(shù)討論會    時間: 2025-3-23 05:43

作者: 能得到    時間: 2025-3-23 13:19

作者: 漂泊    時間: 2025-3-23 14:26

作者: 膽小懦夫    時間: 2025-3-23 19:17

作者: Headstrong    時間: 2025-3-23 23:48

作者: Chivalrous    時間: 2025-3-24 04:30

作者: 失望未來    時間: 2025-3-24 09:00
The Diastasis Function,r manifolds into complex space forms. In Sect. 1.1 we define the diastasis function and summarize its basic properties, while in Sect. 1.2 we describe the diastasis functions of complex space forms, which represent the basic examples of K?hler manifolds. Finally, in Sect. 1.3 we give the formal defi
作者: TATE    時間: 2025-3-24 13:22
,Calabi’s Criterion,nfinite dimensional complex space form. In particular, Calabi provides an algebraic criterion to find out whether a complex manifold admits or not such an immersion. Sections 2.1 and 2.2 are devoted to illustrate Calabi’s criterionfor K?hler immersions into the complex Euclidean space and nonflat co
作者: 釋放    時間: 2025-3-24 18:41

作者: predict    時間: 2025-3-24 19:23

作者: 袖章    時間: 2025-3-25 03:00

作者: STERN    時間: 2025-3-25 05:00

作者: 暴露他抗議    時間: 2025-3-25 11:31

作者: crockery    時間: 2025-3-25 12:19
cises.Assumes no previous knowledge, but doesn‘t patronize t.Microsoft Expression Suite promises new levels of power in creating rich dynamic user experiences on the web; Expression Web, one of the excellent programs within the suite, is a powerful web site creation tool that allows you to rapidly b
作者: Nefarious    時間: 2025-3-25 17:09

作者: Anthropoid    時間: 2025-3-25 22:02
Andrea Loi,Michela Zeddaruly modern text, providing not only classical results but also material that will be important for future research. Much has been added to the previous edition, including eight entirely new chapters on subjects like random measures, Malliavin calculus, multivariate arrays, and stochastic differenti
作者: 滑動    時間: 2025-3-26 02:50

作者: OMIT    時間: 2025-3-26 04:18

作者: floodgate    時間: 2025-3-26 08:39

作者: 政府    時間: 2025-3-26 12:56

作者: averse    時間: 2025-3-26 17:48

作者: 引起痛苦    時間: 2025-3-26 22:53
Hartogs Type Domains,mmetric but just a bounded homogeneous domain.Finally, in Sect. 5.3 we discuss the existence of a K?hler immersion for a large class of Hartogs domains whose K?hler potentials are given locally by . for suitable function . (see Proposition 5.2).
作者: Brochure    時間: 2025-3-27 05:10

作者: 煉油廠    時間: 2025-3-27 06:11
,Calabi’s Criterion,mplex space formsrespectively. In Sect. 2.3 we discuss the existence of a K?hler immersion of a complex space forminto another, which Calabi himself in (Ann Math 58:1–23, 1953) completely classified as direct application of his criterion.
作者: Fillet,Filet    時間: 2025-3-27 11:00
Book 2018ccount of what is known today on the subject and to point out some open problems.? ..Calabi‘s pioneering work, making use of the powerful tool of the diastasis function, allowed him to obtain necessary and sufficient conditions for a neighbourhood of a point to be locally K?hler immersed into a fini
作者: cyanosis    時間: 2025-3-27 14:06
1862-9113 ledge of complex and K?hler geometry.Exercises at the end of.The aim of this book is to describe Calabi‘s original work on K?hler immersions of K?hler manifolds into complex space forms, to provide a detailed account of what is known today on the subject and to point out some open problems.? ..Calab
作者: Dappled    時間: 2025-3-27 20:37
Andrea Loi,Michela ZeddaWinner of the 2017 Book Prize of the Unione Matematica Italiana.Covers topics not surveyed before in the literature.Requires only basic knowledge of complex and K?hler geometry.Exercises at the end of
作者: ASSAY    時間: 2025-3-28 00:56
Lecture Notes of the Unione Matematica Italianahttp://image.papertrans.cn/k/image/541469.jpg
作者: ENACT    時間: 2025-3-28 05:37

作者: STING    時間: 2025-3-28 08:17
978-3-319-99482-6Springer Nature Switzerland AG 2018




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
定兴县| 万全县| 明星| 乐东| 杨浦区| 娱乐| 融水| 屯昌县| 商河县| 太康县| 祁连县| 双江| 阿拉尔市| 隆尧县| 荆州市| 简阳市| 隆昌县| 青州市| 漳浦县| 五河县| 凯里市| 大安市| 文水县| 延寿县| 巩留县| 芒康县| 屏山县| 阳朔县| 常山县| 巍山| 绩溪县| 广宗县| 米易县| 新建县| 浪卡子县| 宁远县| 顺平县| 九台市| 屏山县| 绥德县| 交城县|