派博傳思國(guó)際中心

標(biāo)題: Titlebook: Intelligent Vision in Healthcare; Mukesh Saraswat,Harish Sharma,Karm Veer Arya Book 2022 The Editor(s) (if applicable) and The Author(s), [打印本頁(yè)]

作者: 和尚吃肉片    時(shí)間: 2025-3-21 19:51
書目名稱Intelligent Vision in Healthcare影響因子(影響力)




書目名稱Intelligent Vision in Healthcare影響因子(影響力)學(xué)科排名




書目名稱Intelligent Vision in Healthcare網(wǎng)絡(luò)公開度




書目名稱Intelligent Vision in Healthcare網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Intelligent Vision in Healthcare被引頻次




書目名稱Intelligent Vision in Healthcare被引頻次學(xué)科排名




書目名稱Intelligent Vision in Healthcare年度引用




書目名稱Intelligent Vision in Healthcare年度引用學(xué)科排名




書目名稱Intelligent Vision in Healthcare讀者反饋




書目名稱Intelligent Vision in Healthcare讀者反饋學(xué)科排名





作者: NOTCH    時(shí)間: 2025-3-21 22:35

作者: landmark    時(shí)間: 2025-3-22 03:19
,Predicting Heart Disease with?Multiple Classifiers,rest, K-nearest neighbor, and logistic regression. The final class of a new instance is that predicted by the maximum weighted sum of predictions from the classifiers. This technique is compared with already existing methods, and an improvement in accuracy (92.10%) and sensitivity (94.59%) and a dra
作者: Deject    時(shí)間: 2025-3-22 07:47

作者: insightful    時(shí)間: 2025-3-22 12:19

作者: 鐵砧    時(shí)間: 2025-3-22 13:47
Automatic Brain Tumor Classification in 2D MRI Images Using Integrated Deep Learning and Supervisedop, and detection accuracy of 98.1%, 92.5%, and 83.0% is achieved. The features are extracted using CNN, and tumor detection is done by using four supervised machine learning classifiers. The classifiers used are SVM, KNN classifier, Na?ve Bayes classifier, and discriminant analysis. The accuracy ac
作者: inspiration    時(shí)間: 2025-3-22 18:00

作者: Commonplace    時(shí)間: 2025-3-23 00:04
P. Hosanna Princye,M. Lavanya,S. Siva Subramanian,M. Arivalagan,S. Bagyarajg that blurs the line between truth and falsehood with increasingly powerful strategies supported by artificial intelligence..978-3-030-81570-7978-3-030-81568-4Series ISSN 2945-6118 Series E-ISSN 2945-6126
作者: Nonthreatening    時(shí)間: 2025-3-23 05:07
M. Ganeshkumar,V. Sowmya,E. A. Gopalakrishnan,K. P. Soman
作者: crescendo    時(shí)間: 2025-3-23 06:56

作者: 修剪過的樹籬    時(shí)間: 2025-3-23 11:51
K. Benaggoune,Z. Al Masry,C. Devalland,S. Valmary-degano,N. Zerhouni,L. H. Mouss
作者: CORD    時(shí)間: 2025-3-23 16:12

作者: 邊緣    時(shí)間: 2025-3-23 18:10

作者: Mercurial    時(shí)間: 2025-3-24 02:14

作者: curriculum    時(shí)間: 2025-3-24 03:01

作者: 緩和    時(shí)間: 2025-3-24 10:05

作者: collagenase    時(shí)間: 2025-3-24 10:44
Pramit Ghosh,Debotosh Bhattacharjee,Christian Kollmannue based on their own ideologies, all of which leads them to seek media presence..This chapter will address lobbies in two ways: in political media channels and organizational political communication, especially during the pre-campaign and campaign season. In it, we provide an overview of the trends
作者: 路標(biāo)    時(shí)間: 2025-3-24 17:17

作者: micronized    時(shí)間: 2025-3-24 21:57
2730-6437 nd day-to-day life. It also highlights many challenges faced by research community, like view point variations, scale variations, illumination variations, multi-modalities, and noise..978-981-16-7773-1978-981-16-7771-7Series ISSN 2730-6437 Series E-ISSN 2730-6445
作者: 淺灘    時(shí)間: 2025-3-24 23:45

作者: 戲法    時(shí)間: 2025-3-25 06:57

作者: TAP    時(shí)間: 2025-3-25 10:14

作者: Detonate    時(shí)間: 2025-3-25 12:20

作者: 慢慢沖刷    時(shí)間: 2025-3-25 16:08

作者: Irritate    時(shí)間: 2025-3-25 22:21
,Deep Learning-Based Prediction of?Alzheimer’s Disease from?Magnetic Resonance Images,rning show good results. These network architectures are taken and re-trained using brain images. It is shown that a deep ResNet neural architecture performs better in terms of accuracy. Kaggle dataset was used as the dataset to conduct our experiments.
作者: Mitigate    時(shí)間: 2025-3-26 01:40

作者: 躺下殘殺    時(shí)間: 2025-3-26 05:40

作者: Feedback    時(shí)間: 2025-3-26 09:17
2730-6437 f medical science.Highlights many challenges faced by researThis book focuses on various aspects of computer vision applications in the field of healthcare. It covers new tools and technologies in some of the important areas of medical science like histopathological image analysis, cancer taxonomy,
作者: 虛構(gòu)的東西    時(shí)間: 2025-3-26 15:19

作者: investigate    時(shí)間: 2025-3-26 20:09
Studies in Autonomic, Data-driven and Industrial Computinghttp://image.papertrans.cn/i/image/470193.jpg
作者: Adulate    時(shí)間: 2025-3-26 21:57
https://doi.org/10.1007/978-981-16-7771-7Deep Learning; Convolutional Neural Network; Computer Vision; High Level Image Processing; Machine Learn
作者: 固執(zhí)點(diǎn)好    時(shí)間: 2025-3-27 02:47
978-981-16-7773-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
作者: SHOCK    時(shí)間: 2025-3-27 06:28

作者: fringe    時(shí)間: 2025-3-27 10:01

作者: grenade    時(shí)間: 2025-3-27 15:36

作者: arousal    時(shí)間: 2025-3-27 21:45
,Unsupervised Deep Learning Approach for?the?Identification of?Intracranial Haemorrhage in?CT Imagesset is a common issue for diseases like ICH. To overcome this issue, in this work, we propose a completely unsupervised deep learning framework for the identification of ICH in computed tomography (CT) images. Our proposed method employs unsupervised (principal component analysis) PCA-Net to extract
作者: debris    時(shí)間: 2025-3-27 22:26
Automatic Segmentation of Optic Cup and Optic Disc Using MultiResUNet for Glaucoma Classification fanently. In India, the ophthalmologists are limited in numbers to check the patient. Owing to this, automated detection of glaucoma from the fundus images of the eye region is the state of the art in medical imaging. In this work, the most common method for detection of glaucoma is a parameter calle
作者: 做事過頭    時(shí)間: 2025-3-28 04:49

作者: gusher    時(shí)間: 2025-3-28 08:41
,Predicting Heart Disease with?Multiple Classifiers, hundred million in the previous decade. Given that data is generated daily by several sources and in various formats, its timely, accurate, and cost-efficient prediction is imperative for clinical reforms. Machine learning is reputable for its effectiveness in the prediction of medical conditions b
作者: 確保    時(shí)間: 2025-3-28 12:18

作者: ELUC    時(shí)間: 2025-3-28 16:40
Automatic True Vessel Identification by Efficient Removal of False Blood Vessels for Detection of Rtially, the hybrid median filtering is employed for the noise removal and hybrid independent component analysis is used for image enhancement in the stage of preprocessing. Further from the preprocessed images, the OD segmentation is performed using DAF and modified bee colony algorithm. Then, the f
作者: 陰郁    時(shí)間: 2025-3-28 20:40

作者: 燈絲    時(shí)間: 2025-3-29 00:24

作者: tariff    時(shí)間: 2025-3-29 06:20

作者: 制定    時(shí)間: 2025-3-29 10:22

作者: 某人    時(shí)間: 2025-3-29 12:02
tional feminism and cyberfeminism.Addresses issues of entrepThis project offers a critical overview of how online activities and platforms are becoming an important source for the production and promotion of women’s films. Inspired by a transnational feminist framework, Maule examines blogs, website
作者: kidney    時(shí)間: 2025-3-29 17:54

作者: Explicate    時(shí)間: 2025-3-29 20:18

作者: 描繪    時(shí)間: 2025-3-30 00:26
Pramit Ghosh,Debotosh Bhattacharjee,Christian Kollmann and, until 2008, the nearly complete lack of EU legislation regulating their transparency, very few scientific studies have addressed these influential organizations. Though not well-known, their significance and relevance have become increasingly important in the development, introduction, and imp




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
大邑县| 平谷区| 定南县| 贵阳市| 山丹县| 弋阳县| 清新县| 蒲城县| 慈溪市| 龙川县| 乌鲁木齐市| 哈巴河县| 咸丰县| 崇阳县| 东乌| 宽甸| 廉江市| 左云县| 双柏县| 重庆市| 河南省| 东山县| 怀远县| 凌源市| 龙里县| 洮南市| 南华县| 洮南市| 江北区| 新河县| 英山县| 沧源| 湛江市| 宝坻区| 桐柏县| 富宁县| 盐山县| 黄梅县| 双牌县| 仁布县| 河西区|