派博傳思國際中心

標(biāo)題: Titlebook: Integral Transform Techniques for Green‘s Function; Kazumi Watanabe Book 2015Latest edition Springer International Publishing Switzerland [打印本頁]

作者: opioid    時(shí)間: 2025-3-21 16:13
書目名稱Integral Transform Techniques for Green‘s Function影響因子(影響力)




書目名稱Integral Transform Techniques for Green‘s Function影響因子(影響力)學(xué)科排名




書目名稱Integral Transform Techniques for Green‘s Function網(wǎng)絡(luò)公開度




書目名稱Integral Transform Techniques for Green‘s Function網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Integral Transform Techniques for Green‘s Function被引頻次




書目名稱Integral Transform Techniques for Green‘s Function被引頻次學(xué)科排名




書目名稱Integral Transform Techniques for Green‘s Function年度引用




書目名稱Integral Transform Techniques for Green‘s Function年度引用學(xué)科排名




書目名稱Integral Transform Techniques for Green‘s Function讀者反饋




書目名稱Integral Transform Techniques for Green‘s Function讀者反饋學(xué)科排名





作者: braggadocio    時(shí)間: 2025-3-21 21:17
Cagniard-de Hoop Technique,ier inversion integral is converted to the form of Laplace transform integral and then its Laplace inversion is carried out by inspection without using any integration formula. The Green‘s function for a single SH-wave and the Green‘s dyadics for coupled P, SV and SH-waves are obtained exactly.
作者: 溫順    時(shí)間: 2025-3-22 01:24

作者: Ebct207    時(shí)間: 2025-3-22 07:33
Book 2015Latest editionuare root function. Further, an exact closed form Green’s function for torsional waves is presented, as well as an application technique of the complex integral, which includes the square root function and an application technique of the complex integral..
作者: Outwit    時(shí)間: 2025-3-22 11:47
Definition of Integral Transforms and Distributions, The discussion on the argument of the root function along the branch cut is unique and instructive for the reader, when he/she starts to apply the complex integral to the inverse transform. The last short comment lists some important formula books which are crucial for the inverse transform, i.e. the evaluation of the inversion integral.
作者: 揉雜    時(shí)間: 2025-3-22 13:42

作者: 向下五度才偏    時(shí)間: 2025-3-22 18:57

作者: 陳列    時(shí)間: 2025-3-22 22:42
Acoustic Wave in a Uniform Flow, obtain the time-harmonic response. An application technique of the complex integral is also demonstrated in order to transform an infinite integral along the complex line to that along the real axis in the complex plane. It enabled us to apply the tabulated integration formula.
作者: 公理    時(shí)間: 2025-3-23 02:53
978-3-319-34587-1Springer International Publishing Switzerland 2015
作者: Retrieval    時(shí)間: 2025-3-23 08:14
Integral Transform Techniques for Green‘s Function978-3-319-17455-6Series ISSN 1613-7736 Series E-ISSN 1860-0816
作者: A保存的    時(shí)間: 2025-3-23 10:45
Kazumi WatanabeA valuable reference book for engineers.Includes full descriptions of the Cagniard-de Hoop technique and the branch cut for square root functions.Employs a unified mathematical technique as the soluti
作者: Mendacious    時(shí)間: 2025-3-23 17:32

作者: Allege    時(shí)間: 2025-3-23 21:00
https://doi.org/10.1007/978-3-319-17455-6Cagniard‘s-de Hoop Techniques; Exact Solutions; Green‘s Function and Dyadic; Integral Transform; Wave Ph
作者: 滔滔不絕的人    時(shí)間: 2025-3-23 23:45
,Green’s Dyadic for an Isotropic Elastic Solid,onses, are obtained by the integral transform method. The time-harmonic response is derived by the convolution integral of the impulsive response without solving the differential equations for the time-harmonic source. In the last section, two exact closed form Green‘s functions for torsional waves are also presented.
作者: Coeval    時(shí)間: 2025-3-24 04:11

作者: legislate    時(shí)間: 2025-3-24 08:22
Definition of Integral Transforms and Distributions,unctions which are frequently used as the source function, and a concise introduction of the branch cut for a multi-valued square root function. The multiple integral transforms and their notations are also explained. The newly added Sect. 1.3 explains closely how to introduce the branch cut for the
作者: 開始沒有    時(shí)間: 2025-3-24 12:03
,Green’s Functions for Laplace and Wave Equations,ique of the integral transform method is demonstrated. Especially, in the case of the time-harmonic response for the 1 and 2D wave equations, the integration path for the inversion integral is discussed in detail with use of the results in Sect. 1.3. At the end of the chapter, the obtained Green‘s f
作者: Amendment    時(shí)間: 2025-3-24 16:51

作者: 沙發(fā)    時(shí)間: 2025-3-24 20:42

作者: 得意牛    時(shí)間: 2025-3-24 23:46
,Green’s Functions for Beam and Plate,eam and plate are discussed. Two dynamic responses, the impulsive and time-harmonic responses, are derived by the integral transform method. In addition to the tabulated integration formulas, an inversion integral is evaluated by the application of the complex integral theory.
作者: Extemporize    時(shí)間: 2025-3-25 07:13
Cagniard-de Hoop Technique,of an elastic half space to a point impulsive load is discussed by the integral transform method. Applying Cauchy‘s complex integral theorem, the Fourier inversion integral is converted to the form of Laplace transform integral and then its Laplace inversion is carried out by inspection without usin
作者: STRIA    時(shí)間: 2025-3-25 10:06
,Miscellaneous Green’s Functions, static Green’s dyadicfor an orthotropic elastic solid, and for an inhomogeneous elastic solid. The third section discusses the Green’s function for torsional waves in an anisotropic solid. The fourth section discusses wave reflection at a moving boundary.?The fifth section?is?concerned with wave sc
作者: Intentional    時(shí)間: 2025-3-25 15:09
Kazumi Watanabeut zijn echter in de afgelopen jaren steeds verder uitgebreid; derhalve wordt de term bekkenfysiodiagnostiek ge?ntroduceerd. .Wetenschappelijk onderzoek heeft zich tot nu toe meer gericht op de behandeling van bekken- en bekkenbodemgerelateerde klachten. Evidence-based practice zal benut worden om d
作者: Biofeedback    時(shí)間: 2025-3-25 16:10

作者: 閑聊    時(shí)間: 2025-3-25 23:19

作者: 寬大    時(shí)間: 2025-3-26 00:09

作者: 轉(zhuǎn)換    時(shí)間: 2025-3-26 07:50

作者: 察覺    時(shí)間: 2025-3-26 09:44

作者: 嚙齒動(dòng)物    時(shí)間: 2025-3-26 13:15

作者: MEN    時(shí)間: 2025-3-26 17:33
Kazumi Watanabeeneren, de bekkenfysiotherapeutische diagnose en het behandelplan. .Het bekkenfysiotherapeutisch consult krijgt apart aandacht. En vervolgens is een hoofdstuk gewijd aan specifieke doelgroepen binnen de diagnostiek door de bekkenfysiotherapeut. Als laatste komt de samenwerking met andere disciplines
作者: concubine    時(shí)間: 2025-3-27 00:55
Kazumi Watanabeeneren, de bekkenfysiotherapeutische diagnose en het behandelplan. .Het bekkenfysiotherapeutisch consult krijgt apart aandacht. En vervolgens is een hoofdstuk gewijd aan specifieke doelgroepen binnen de diagnostiek door de bekkenfysiotherapeut. Als laatste komt de samenwerking met andere disciplines
作者: 周年紀(jì)念日    時(shí)間: 2025-3-27 04:27

作者: FLIP    時(shí)間: 2025-3-27 06:01
Kazumi Watanabeeneren, de bekkenfysiotherapeutische diagnose en het behandelplan. .Het bekkenfysiotherapeutisch consult krijgt apart aandacht. En vervolgens is een hoofdstuk gewijd aan specifieke doelgroepen binnen de diagnostiek door de bekkenfysiotherapeut. Als laatste komt de samenwerking met andere disciplines
作者: 你不公正    時(shí)間: 2025-3-27 10:26

作者: 不開心    時(shí)間: 2025-3-27 15:16

作者: Fibrinogen    時(shí)間: 2025-3-27 18:13

作者: 陳列    時(shí)間: 2025-3-28 00:02
Integral Transform Techniques for Green‘s Function
作者: foppish    時(shí)間: 2025-3-28 03:19

作者: 增減字母法    時(shí)間: 2025-3-28 08:33
Rene Gaeta,Stephanie Izaguirre,Anureet K. Shahforschung.Gibt Tipps, wie man die eigenen kreativen Prozesse.Denken Sie, das Gehirn ist eine perfekte Rechenmaschine, die evolution?re Krone aller Informationssysteme, die komplexeste Struktur des Universums, pr?ziser und leistungsf?higer als jeder Computer? Vergessen Sie das sofort! Das Gehirn ist




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
德钦县| 璧山县| 儋州市| 手游| 寿阳县| 吉木萨尔县| 清水县| 道孚县| 新化县| 盱眙县| 上蔡县| 霍山县| 江达县| 湟中县| 临武县| 新沂市| 禄丰县| 仙游县| 平泉县| 方城县| 沁源县| 弥渡县| 高淳县| 芦山县| 通河县| 宜兰市| 岢岚县| 响水县| 新蔡县| 淮阳县| 夹江县| 宁晋县| 湖口县| 开江县| 昔阳县| 溧阳市| 绩溪县| 太和县| 温宿县| 县级市| 苗栗县|