派博傳思國際中心

標(biāo)題: Titlebook: Human and Machine Learning; Visible, Explainable Jianlong Zhou,Fang Chen Textbook 2018 Springer International Publishing AG, part of Spring [打印本頁]

作者: cessation    時間: 2025-3-21 18:08
書目名稱Human and Machine Learning影響因子(影響力)




書目名稱Human and Machine Learning影響因子(影響力)學(xué)科排名




書目名稱Human and Machine Learning網(wǎng)絡(luò)公開度




書目名稱Human and Machine Learning網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Human and Machine Learning被引頻次




書目名稱Human and Machine Learning被引頻次學(xué)科排名




書目名稱Human and Machine Learning年度引用




書目名稱Human and Machine Learning年度引用學(xué)科排名




書目名稱Human and Machine Learning讀者反饋




書目名稱Human and Machine Learning讀者反饋學(xué)科排名





作者: Harpoon    時間: 2025-3-21 20:39

作者: 即席演說    時間: 2025-3-22 03:33

作者: 旅行路線    時間: 2025-3-22 06:28

作者: sebaceous-gland    時間: 2025-3-22 09:05

作者: reject    時間: 2025-3-22 13:24

作者: BOOM    時間: 2025-3-22 17:18
Critical Challenges for the Visual Representation of Deep Neural Networksout their interpretability. Visual representation is one way researchers are attempting to make sense of these models and their behaviour. The representation of neural networks raises questions which cross disciplinary boundaries. This chapter draws on a growing collection of interdisciplinary schol
作者: delusion    時間: 2025-3-22 21:38

作者: critique    時間: 2025-3-23 05:12
Perturbation-Based Explanations of Prediction Models to neural networks and more general perturbation-based approaches which can be used with arbitrary prediction models. We present an overview of perturbation-based approaches, with focus on the most popular methods (EXPLAIN, IME, LIME). These methods support explanation of individual predictions but
作者: 蜿蜒而流    時間: 2025-3-23 07:09

作者: staging    時間: 2025-3-23 10:55
Revealing User Confidence in Machine Learning-Based Decision Makingion making called . is proposed to show how human’s behaviour and physiological signals are used to reveal human cognition states in ML-based decision making. The chapter takes the revealing of user confidence in ML-based decision making as an example to demonstrate the effectiveness of the proposed
作者: entrance    時間: 2025-3-23 16:16

作者: malign    時間: 2025-3-23 18:30

作者: Gudgeon    時間: 2025-3-24 02:05

作者: 空氣    時間: 2025-3-24 04:37
Group Cognition and Collaborative AIiscusses group cognition as a principle for designing collaborative AI. Group cognition is the ability to relate to other group members’ decisions, abilities, and beliefs. It thereby allows participants to adapt their understanding and actions to reach common objectives. Hence, it underpins collabor
作者: CLOT    時間: 2025-3-24 08:39

作者: TRUST    時間: 2025-3-24 14:28

作者: growth-factor    時間: 2025-3-24 18:41
Patrick C. Shihklassischen Risiken wie Feuer, Explosion oder Naturgefahren an Versicherungen sind schon l?nger nicht mehr als alleinige Absicherung gegen Unternehmensrisiken ausreichend. Szenarien für politische Risiken, Hackerangriffe, Datendiebstahl sowie Ausfall von IT-Systemen, kritischer Infrastruktur oder vo
作者: ETCH    時間: 2025-3-24 21:24

作者: relieve    時間: 2025-3-25 00:02

作者: amyloid    時間: 2025-3-25 06:27
ohe Geldstrafen, Klagen und Reputationsverlust für die betroffenen Unternehmen zur Folge hatten. Die Ausl?ser waren vor allem Korruptions- und Geldw?schef?lle. In jedem dieser F?lle wurde die Verantwortlichkeit der Organe und sonstiger Entscheidungstr?ger im Unternehmen thematisiert. Neben der Freih
作者: angina-pectoris    時間: 2025-3-25 10:52

作者: VOK    時間: 2025-3-25 13:53
Jianlong Zhou,Kun Yu,Fang Chenrkungen zur effektiven Nutzung Die beste Information ist zu nichts nütze, wenn man sie nicht findet. Ausgehend von dieser Tatsache wurde das vorliegende Werk so gestaltet, da? es dem Leser m?glichst leicht f?llt, sich zu orientieren und spezielle Informationen schnell zu finden. Aufbau des Werkes ?B
作者: 殺蟲劑    時間: 2025-3-25 16:22

作者: BLANK    時間: 2025-3-26 00:04
Joseph Lyons,Nhut Ho,Jeremy Friedman,Gene Alarcon,Svyatoslav Guznovhaltsübersicht der Sektionen und ihrer Kapitel (die mit der Folgelieferung Dezember ‘96 gelieferten Beitr?ge sind farbig unterlegt. ) Sektion 00, Einleitung 00. 00 Einleitung K D?TTINGER, U. LUTZ, K ROTH 00. 01 Inhaltsübersicht 00. 02 uto. r:enverzeic. , . . . . . . """-_ Sektion 01, Betriebswirt- s
作者: attenuate    時間: 2025-3-26 02:10
Textbook 2018owers, machine learning becomes hot in different applications. However, because of the nature of “black-box” in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the
作者: ARENA    時間: 2025-3-26 06:28
Transparency in Fair Machine Learning: the Case of Explainable Recommender Systemsfair models. We then review the taxonomy of explanation styles for recommender systems and review models that can provide explanations for their recommendations. We conclude by reviewing evaluation metrics for assessing the power of explainability in recommender systems.
作者: MAUVE    時間: 2025-3-26 08:29
Beyond Human-in-the-Loop: Empowering End-Users with Transparent Machine Learningr than struggling with a development environment and new programming syntax or relying on disciplinary non-experts for essential technical help. This research explores a similar paradigm for scientists and end-users that can be thought of as End-User Data Analytics (EUDA), or Transparent Machine Learning (TML).
作者: 有法律效應(yīng)    時間: 2025-3-26 16:26
Deep Learning for Plant Diseases: Detection and Saliency Map Visualisationlant diseases classification with an accuracy reaching .. Furthermore, we have proposed the use of saliency maps as a visualisation method to understand and interpret the CNN classification mechanism. This visualisation method increases the transparency of deep learning models and gives more insight into the symptoms of plant diseases.
作者: 聽覺    時間: 2025-3-26 19:24

作者: panorama    時間: 2025-3-26 22:17

作者: 漂泊    時間: 2025-3-27 02:21
2D Transparency Space—Bring Domain Users and Machine Learning Experts Togethercy space which integrates domain users and ML experts together to make ML transparent. We identify typical Transparent ML (TML) challenges and discuss key obstacles to TML, which aim to inspire active discussions of making ML transparent with a systematic view in this timely field.
作者: Noisome    時間: 2025-3-27 07:56
Effective Design in Human and Machine Learning: A Cognitive Perspective. A framework was proposed to advance the practice of machine learning focusing on transfer of knowledge in human deep learning with respect to the relations between human cognitive processes and machine learning.
作者: Ointment    時間: 2025-3-27 10:34
Perturbation-Based Explanations of Prediction Models as their advantages and disadvantages. We illustrate practical issues and challenges in applying the explanation methodology in a business context on a practical use case of B2B sales forecasting in a company. We demonstrate how explanations can be used as a what-if analysis tool to answer relevant business questions.
作者: 不可比擬    時間: 2025-3-27 17:36
Group Cognition and Collaborative AItion with humans: conversational grounding and theory of mind. These concepts are somewhat different from those already discussed in AI research. We outline some new implications for collaborative AI, aimed at extending skills and solution spaces and at improving joint cognitive and creative capacity.
作者: HIKE    時間: 2025-3-27 19:03

作者: 內(nèi)行    時間: 2025-3-28 01:33
Do I Trust a Machine? Differences in User Trust Based on System Performanceceive the accuracy of the system and adjust their trust accordingly. The results also show notable differences between two groups of users and indicate a possible threshold in the acceptance of the system. This important learning can be leveraged by designers of practical systems for sustaining the desired level of user trust.
作者: Estimable    時間: 2025-3-28 02:32
Trust and Transparency in Machine Learning-Based Clinical Decision Supporte trust in automation, but is hard to achieve in practice. This chapter discusses the clinical and technology related factors that influence clinician trust in automated systems, and can affect the need for transparency when developing machine learning-based clinical decision support systems.
作者: profligate    時間: 2025-3-28 07:14
Jianlong Zhou,Fang ChenCreates a systematic view of relations between human and machine learning from the perspectives of visualisation, explanation, trustworthiness and transparency.Explores human aspects in machine learni
作者: ONYM    時間: 2025-3-28 11:05

作者: Callus    時間: 2025-3-28 16:10
https://doi.org/10.1007/978-3-319-90403-0Machine Learning; Human Factors; Visualization; Explanation; Transparency
作者: Pde5-Inhibitors    時間: 2025-3-28 19:05
978-3-030-08007-5Springer International Publishing AG, part of Springer Nature 2018
作者: 旅行路線    時間: 2025-3-28 22:57
Human and Machine Learning978-3-319-90403-0Series ISSN 1571-5035 Series E-ISSN 2524-4477
作者: 使害怕    時間: 2025-3-29 06:08
Transparency Communication for Machine Learning in Human-Automation Interactiond agents using automated explanations. We will discuss the application of a particular ML method, reinforcement learning (RL), in Partially Observable Markov Decision Process (POMDP)-based agents, and the design of explanation algorithms for RL in POMDPs.
作者: 神圣將軍    時間: 2025-3-29 09:45
Explaining the Predictions of an Arbitrary Prediction Model: Feature Contributions and Quasi-nomogras work on a general method for explaining arbitrary prediction models (classification or regression) to a general methodology for constructing a quasi-nomogram for a black-box prediction model. We show that for an additive model, such a quasi-nomogram is equivalent to the one we would construct if t
作者: 朦朧    時間: 2025-3-29 14:24

作者: 爭議的蘋果    時間: 2025-3-29 16:15

作者: Discrete    時間: 2025-3-29 21:14
Textbook 2018stematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but al
作者: faultfinder    時間: 2025-3-30 00:15
1571-5035 an and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but al978-3-030-08007-5978-3-319-90403-0Series ISSN 1571-5035 Series E-ISSN 2524-4477
作者: pineal-gland    時間: 2025-3-30 07:22
Mohammed Brahimi,Marko Arsenovic,Sohaib Laraba,Srdjan Sladojevic,Kamel Boukhalfa,Abdelouhab Moussaou
作者: 窩轉(zhuǎn)脊椎動物    時間: 2025-3-30 11:23

作者: 彩色的蠟筆    時間: 2025-3-30 13:29

作者: 綠州    時間: 2025-3-30 19:43

作者: irritation    時間: 2025-3-30 23:12
Robert Zheng,Kevin Greenbergtimierung von Ressourcen und Mitteln im Unternehmen einen ad?quaten Schutz für benannte Gef?hrdungen aufbaut. Durch die Vorbereitung auf die Bedrohungen k?nnen die Auswirkungen reduziert oder auf ein akzeptiertes Ma? begrenzt und somit für das Unternehmen kontrollierbar und planbar gemacht werden.
作者: Schlemms-Canal    時間: 2025-3-31 03:31
David V. Pynadath,Michael J. Barnes,Ning Wang,Jessie Y. C. ChenRolle als unverzichtbarer Risikopartner in einem sich ?ndernden Marktumfeld zu erhalten und weiter auszubauen. Diesbezüglich besteht die Notwendigkeit eines ganzheitlichen Ansatzes bei der Risikobeurteilung eines Unternehmens, der den Fokus auf die Kernbereiche Risiko, Kapital und Mensch richtet. Mi
作者: 手工藝品    時間: 2025-3-31 09:05





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
托里县| 潮安县| 乐至县| 佛教| 绥德县| 高平市| 安义县| 贵溪市| 西乌珠穆沁旗| 措美县| 武义县| 资溪县| 六盘水市| 忻城县| 莱州市| 梁河县| 玛纳斯县| 丁青县| 安图县| 潜江市| 曲周县| 淮阳县| 彭水| 资兴市| 肃南| 德保县| 策勒县| 法库县| 舒城县| 阳泉市| 文山县| 奈曼旗| 洪泽县| 黄冈市| 沐川县| 威远县| 屏东县| 特克斯县| 财经| 嘉黎县| 云南省|