標題: Titlebook: ; [打印本頁] 作者: 難受 時間: 2025-3-21 16:52
書目名稱Galois Theories of Fields and Rings影響因子(影響力)
書目名稱Galois Theories of Fields and Rings影響因子(影響力)學科排名
書目名稱Galois Theories of Fields and Rings網(wǎng)絡公開度
書目名稱Galois Theories of Fields and Rings網(wǎng)絡公開度學科排名
書目名稱Galois Theories of Fields and Rings被引頻次
書目名稱Galois Theories of Fields and Rings被引頻次學科排名
書目名稱Galois Theories of Fields and Rings年度引用
書目名稱Galois Theories of Fields and Rings年度引用學科排名
書目名稱Galois Theories of Fields and Rings讀者反饋
書目名稱Galois Theories of Fields and Rings讀者反饋學科排名
作者: aneurysm 時間: 2025-3-21 22:05 作者: FRAX-tool 時間: 2025-3-22 00:45 作者: 實施生效 時間: 2025-3-22 04:50 作者: 遠地點 時間: 2025-3-22 09:27
The Galois Theorem of Grothendieckal Galois extension of fields, a finite-dimensional .-algebra . is split by . when each element . ∈ . is a root of a polynomial .(.) ∈ .[.] which factors in .[.] into distinct linear factors. The corresponding Galois theorem exhibits a contravariant equivalence between the category of finite-dimensi作者: Instinctive 時間: 2025-3-22 14:14
Profinite Topological Spacestructures on the algebraic ones. These topological aspects do not appear explicitly in the finite-dimensional cases, just because the topologies involved are then discrete. The aim of the present chapter is to develop the useful topological ingredients in view of proving infinite-dimensional Galois 作者: Instinctive 時間: 2025-3-22 21:05
The Galois Theorems in Arbitrary Dimensionr a field. This is a first step towards a Galois theory for rings, where the polynomial approach fails to work. The present chapter develops a second important step in the same direction: getting rid of the notion of dimension, which does not naturally make sense in the case of rings. We thus genera作者: 寬敞 時間: 2025-3-23 00:02 作者: EVADE 時間: 2025-3-23 02:41 作者: Endearing 時間: 2025-3-23 08:37 作者: elastic 時間: 2025-3-23 10:40 作者: incubus 時間: 2025-3-23 17:45 作者: 額外的事 時間: 2025-3-23 20:41 作者: 割公牛膨脹 時間: 2025-3-24 01:43
Semantik und Argumentstrukturen root of a polynomial .(.) ∈ .[.] which factors in .[.] into distinct linear factors. The . Gal[. : .] of that extension is the group of all field endomorphisms (and thus automorphisms) of . which fix all the elements of .. The Galois theorem exhibits a bijection between the subgroups of the Galois 作者: alabaster 時間: 2025-3-24 03:27
Sprache im Kontext des Mathematiklernensal Galois extension of fields, a finite-dimensional .-algebra . is split by . when each element . ∈ . is a root of a polynomial .(.) ∈ .[.] which factors in .[.] into distinct linear factors. The corresponding Galois theorem exhibits a contravariant equivalence between the category of finite-dimensi作者: d-limonene 時間: 2025-3-24 07:45 作者: 消散 時間: 2025-3-24 14:09
,Einführung von Sprachportalen,r a field. This is a first step towards a Galois theory for rings, where the polynomial approach fails to work. The present chapter develops a second important step in the same direction: getting rid of the notion of dimension, which does not naturally make sense in the case of rings. We thus genera作者: BINGE 時間: 2025-3-24 15:55 作者: Facilities 時間: 2025-3-24 20:08
,Einführung in die Spracherkennung,set of (iso)morphisms. The Galois theory of rings will use a Galois groupoid, with possibly several objects, instead of a group. A profinite groupoid will be one whose set of objects and set of morphisms are profinite spaces, while all operations are continuous. The notion of profinite presheaf on a作者: RUPT 時間: 2025-3-25 01:20
Programmieren von Mikrocomputern.-modules is always monadic over the category of .-modules: this implies that we can view an .-module as being an .-module with an additional structure. The morphism σ: . → . of rings is a morphism of . when, moreover, the category of .-modules is co-monadic over the category of .-modules; in that c作者: semiskilled 時間: 2025-3-25 07:15 作者: 饒舌的人 時間: 2025-3-25 08:02
Logogen light. Die Architektur der Sprache, case of fields. The same functors make it possible to define the profinite Galois groupoid of a Galois extension of rings. The Galois theorem for rings then exhibits an equivalence between the category of split algebras and that of profinite presheaves on the profinite Galois groupoid. In the case 作者: obviate 時間: 2025-3-25 15:22 作者: coalition 時間: 2025-3-25 18:59 作者: Diatribe 時間: 2025-3-25 22:34 作者: labyrinth 時間: 2025-3-26 01:06
The Classical Galois Theoremomorphisms (and thus automorphisms) of . which fix all the elements of .. The Galois theorem exhibits a bijection between the subgroups of the Galois group and the intermediate field extensions . ? . ? ..作者: 變化 時間: 2025-3-26 05:29 作者: Volatile-Oils 時間: 2025-3-26 09:43 作者: RACE 時間: 2025-3-26 15:27
Logogen light. Die Architektur der Sprache,gs then exhibits an equivalence between the category of split algebras and that of profinite presheaves on the profinite Galois groupoid. In the case of fields, this reduces to the classical profinite Galois group and the Grothendieck Galois theorem for arbitrary Galois extensions of fields.作者: 思考而得 時間: 2025-3-26 19:02 作者: 支形吊燈 時間: 2025-3-26 23:48
Programmieren von Mikrocomputernase, each .-module can thus also be seen as an .-module with an additional structure. We prove that the effective descent morphisms of rings are exactly the . ones: the injective morphisms, which remain injective when tensored with whatever .-module. The descent theorem for rings implies an analogous result for algebras.作者: 大雨 時間: 2025-3-27 01:59 作者: ALIEN 時間: 2025-3-27 09:19 作者: Exonerate 時間: 2025-3-27 13:12 作者: Altitude 時間: 2025-3-27 15:10
Aspekte der Metapher in der Neuzeit,uivalence of categories between the category of profinite spaces and that of Boolean algebras. This link will make it possible to combine algebraic and topological aspects in the infinite-dimensional Galois theory of fields, but also in the Galois theory of rings.作者: 全能 時間: 2025-3-27 19:15 作者: delusion 時間: 2025-3-28 01:54
The Galois Theorem of Grothendieckhe quotients of Gal[. : .], which is finite and viewed here as acting on itself. It is a classical result of the theory of group actions that these quotients are themselves in bijection with the subgroups of Gal[. : .].作者: 南極 時間: 2025-3-28 04:13
Profinite Topological Spacesuivalence of categories between the category of profinite spaces and that of Boolean algebras. This link will make it possible to combine algebraic and topological aspects in the infinite-dimensional Galois theory of fields, but also in the Galois theory of rings.作者: 割讓 時間: 2025-3-28 09:53 作者: minimal 時間: 2025-3-28 11:20 作者: 小說 時間: 2025-3-28 17:00 作者: 極小量 時間: 2025-3-28 20:55 作者: relieve 時間: 2025-3-29 02:01 作者: impaction 時間: 2025-3-29 03:44 作者: 遷移 時間: 2025-3-29 09:57 作者: 男生如果明白 時間: 2025-3-29 13:37 作者: evince 時間: 2025-3-29 17:31 作者: 做方舟 時間: 2025-3-29 21:03 作者: Brocas-Area 時間: 2025-3-30 01:03
Einleitung, dies beispielsweise in Abgrenzung zur Sprache tun. Bilder bilden Wirklichkeit nicht nur ab. Vielmehr sind sie Teil einer Wirklichkeit, die zugleich auch immer die Wahrnehmung der Wirklichkeit des Betrachters mitgestalten und pr?gen. Vor diesem Hintergrund mag die Auseinandersetzung mit der Kunst au作者: 傾聽 時間: 2025-3-30 07:13
Book 2022exts is increasingly the focus. In addition, organisations and the employees working in these institutions must struggle with constant changes in the environment under volatility, uncertainty, complexity, and ambiguity (VUCA) conditions..Based on an overview of classic and newer leadership approache作者: 吼叫 時間: 2025-3-30 09:01
To add another dimension of interaction to your Augmented Reality experience, you can incorporate sound and video to your scenes. It is especially effective when they are the result of interacting with items in the scene.