派博傳思國(guó)際中心

標(biāo)題: Titlebook: Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces; Marek Golasiński,Juno Mukai Book 2014 Springer International [打印本頁(yè)]

作者: Mottled    時(shí)間: 2025-3-21 17:10
書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces影響因子(影響力)




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces影響因子(影響力)學(xué)科排名




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces被引頻次




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces被引頻次學(xué)科排名




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces年度引用




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces年度引用學(xué)科排名




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces讀者反饋




書(shū)目名稱Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces讀者反饋學(xué)科排名





作者: Locale    時(shí)間: 2025-3-21 22:38
se of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph..978-3-319-38454-2978-3-319-11517-7
作者: 現(xiàn)代    時(shí)間: 2025-3-22 00:25

作者: 嗎啡    時(shí)間: 2025-3-22 04:45
Book 2014Gottlieb groups of projective spaces or to give the lower bounds of their orders. Making use of the properties of Whitehead products, the authors also determine some Whitehead center groups of projective spaces that are relevant and new within this monograph..
作者: 拋射物    時(shí)間: 2025-3-22 11:47

作者: 膽小懦夫    時(shí)間: 2025-3-22 16:47
Klaus Bellmann,Udo MildenbergerThis chapter published in [20] takes up the systematic study of the Gottlieb groups . of spheres for .?≤?13 by means of the classical homotopy theory methods. We fully determine the groups . for .?≤?13 except for the two-primary components in the cases: .. Especially, we show that . if . for .?≥?4.
作者: 膽小懦夫    時(shí)間: 2025-3-22 20:43
Grundlegungen zur Unternehmungsteilung,By the use of Siegel’s method and the classical results of homotopy groupsof spheres and Lie groups, we determine in this chapter some Gottlieb groups of projective spaces or give the lower bounds of their orders. Furthermore, making use of the properties of Whitehead products, we determine some Whitehead center groups of projective spaces.
作者: 原來(lái)    時(shí)間: 2025-3-22 23:18
https://doi.org/10.1007/978-3-8350-9066-8This chapter takes up the systematic study of the Gottlieb groups . of Moore spaces .(.,?.) foran abelian group . and .?≥?2. The groups . and . are determined for .?=?0,?1,?2,?3,?4,?5 and .?≥?2 provided . is finite.
作者: browbeat    時(shí)間: 2025-3-23 04:16
Gottlieb Groups of Spheres,This chapter published in [20] takes up the systematic study of the Gottlieb groups . of spheres for .?≤?13 by means of the classical homotopy theory methods. We fully determine the groups . for .?≤?13 except for the two-primary components in the cases: .. Especially, we show that . if . for .?≥?4.
作者: 爆米花    時(shí)間: 2025-3-23 07:28

作者: 做事過(guò)頭    時(shí)間: 2025-3-23 12:54
Gottlieb and Whitehead Center Groups of Moore Spaces,This chapter takes up the systematic study of the Gottlieb groups . of Moore spaces .(.,?.) foran abelian group . and .?≥?2. The groups . and . are determined for .?=?0,?1,?2,?3,?4,?5 and .?≥?2 provided . is finite.
作者: OTTER    時(shí)間: 2025-3-23 16:02
Marek Golasiński,Juno MukaiPresents a systematic study of Gottlieb Groups of Spheres.Uses classical methods of homotopy theory and Lie groups to develop new theories on Gottlieb Projective Spaces.Contains a number of nontrivial
作者: Between    時(shí)間: 2025-3-23 19:01
https://doi.org/10.1007/978-3-319-11517-7Gottlieb Groups; Homotopy Groups; Lie Groups; Topology; Whitehead Products
作者: 協(xié)定    時(shí)間: 2025-3-24 00:47
Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces
作者: 小蟲(chóng)    時(shí)間: 2025-3-24 05:22
Gottlieb and Whitehead Center Groups of Spheres, Projective and Moore Spaces978-3-319-11517-7
作者: NUDGE    時(shí)間: 2025-3-24 09:41

作者: 拖網(wǎng)    時(shí)間: 2025-3-24 11:22
soll. Eines der Ziele ist ein hoher Grad von Automatismus des Systems, um Betriebs- und Personalkosten zu minimieren. Ungeachtet der automatischen Datenerfassungsm?glichkeiten sollen manuelle Erweiterungen bzw. Korrekturen ohne Expertenwissen m?glich sein. Eine der Hauptanforderungen, die identifizi
作者: 歌唱隊(duì)    時(shí)間: 2025-3-24 17:41

作者: FLAG    時(shí)間: 2025-3-24 21:38

作者: 恩惠    時(shí)間: 2025-3-25 01:53

作者: helper-T-cells    時(shí)間: 2025-3-25 03:51

作者: Musculoskeletal    時(shí)間: 2025-3-25 09:58

作者: 爭(zhēng)吵加    時(shí)間: 2025-3-25 11:40

作者: 一夫一妻制    時(shí)間: 2025-3-25 19:07
Hypoxic Adaptation in the Nervous System: Promise for Novel Therapeutics for Acute and Chronic Neurostatic mechanisms and as such, homeostatic sensors may be potent therapeutic targets. The hypoxic response mediated by hypoxia inducible factor (HIF) downstream of oxygen sensing by HIF prolyl 4-hydroxylases (PHDs) has been well-studied, revealing cell-type specific regulation of HIF stability, acti
作者: 天然熱噴泉    時(shí)間: 2025-3-25 22:55
Electric Machine Control Technics,hine control are described, as well as the regulation based on classic controllers such as the proportional–integral–differential (PID). The structures of the PID controller are also described in order to know how to choose the most suitable for the design. The digital control is introduced in detai
作者: 匍匐    時(shí)間: 2025-3-26 02:34

作者: lethargy    時(shí)間: 2025-3-26 08:19
1868-4238 n and harmonisation of the numerous and widely divergingviews in the field of information systems.This issue has become ahot topic, as many leading information system researchers andpractitioners come to realise the importance of better communicationamong the members of the information systems commu
作者: 泥瓦匠    時(shí)間: 2025-3-26 09:05

作者: 百靈鳥(niǎo)    時(shí)間: 2025-3-26 15:12
Die An?sthesie in der Geburtshilfe Geburt eintrat. Im 16. Jahrhundert kam es manchmal vor, da? man den Ehemann mit den Fü?en nach oben aufh?ngte, solange die Geburt dauerte. Vielleicht h?tte man sich schon früher für die Schmerzlinderung bei der Geburt interessiert, wenn diese Methode l?nger angewandt worden w?re.
作者: 腐蝕    時(shí)間: 2025-3-26 19:12
1867-4534 ization" is a comprehensive reference for researchers, practitioners and advanced-level students interested in both the theory and practice of using computational intelligence in real-world applications..978-3-642-26361-3978-3-642-12775-5Series ISSN 1867-4534 Series E-ISSN 1867-4542
作者: 廚房里面    時(shí)間: 2025-3-26 22:08

作者: Spinous-Process    時(shí)間: 2025-3-27 01:53

作者: 注意    時(shí)間: 2025-3-27 05:42
V-Shaped Bowls and Feasting Ceremonies in the Late Chalcolithic Period in the Southern Levant: The C- target organisms. Biorational control is based on a diversity of chemical, biological and physical approaches for controlling insect pests which results in minimum risk to man and the environment.978-94-007-9168-8978-90-481-2316-2
作者: 暫時(shí)別動(dòng)    時(shí)間: 2025-3-27 11:47
erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ide
作者: Presbyopia    時(shí)間: 2025-3-27 14:44

作者: Substitution    時(shí)間: 2025-3-27 17:53
Aufgaben der Arzneiverordnungslehre,rer chemischen Eigenschaften (L?slichkeit, Haltbarkeit usw.) voraus. Die klinische Erfahrung mu? die daraus abgeleitete Anzeigestellung für die Verwendung und Verordnungsform sowie die Dosierungsverh?ltnisse am Menschen begründen. In sehr vielen F?llen ist die therapeutische Brauchbarkeit von Heilst




歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
白山市| 庆云县| 紫云| 白河县| 佛坪县| 阿拉善左旗| 谷城县| 丰都县| 五大连池市| 昭苏县| 泾阳县| 大埔县| 东宁县| 咸阳市| 东山县| 林周县| 赣榆县| 潼关县| 嘉祥县| 瓦房店市| 盈江县| 通化县| 江西省| 榕江县| 保定市| 开封县| 会昌县| 马尔康县| 阿合奇县| 穆棱市| 阳信县| 榕江县| 通江县| 葵青区| 鄂尔多斯市| 华蓥市| 涟源市| 新建县| 大城县| 通城县| 安吉县|