標題: Titlebook: Geometry VI; Riemannian Geometry M. M. Postnikov Textbook 2001 Springer-Verlag Berlin Heidelberg 2001 Lie groups.Minimal surface.Riemannian [打印本頁] 作者: ominous 時間: 2025-3-21 19:50
書目名稱Geometry VI影響因子(影響力)
書目名稱Geometry VI影響因子(影響力)學(xué)科排名
書目名稱Geometry VI網(wǎng)絡(luò)公開度
書目名稱Geometry VI網(wǎng)絡(luò)公開度學(xué)科排名
書目名稱Geometry VI被引頻次
書目名稱Geometry VI被引頻次學(xué)科排名
書目名稱Geometry VI年度引用
書目名稱Geometry VI年度引用學(xué)科排名
書目名稱Geometry VI讀者反饋
書目名稱Geometry VI讀者反饋學(xué)科排名
作者: Ischemic-Stroke 時間: 2025-3-21 20:35 作者: 收養(yǎng) 時間: 2025-3-22 01:32 作者: Thyroxine 時間: 2025-3-22 05:38 作者: 使服水土 時間: 2025-3-22 11:38 作者: incontinence 時間: 2025-3-22 15:49 作者: incontinence 時間: 2025-3-22 19:53
0938-0396 ies "Lectures on Geometry. " Therefore, to make the presentation relatively independent and self-contained in the English translation, I have added supplementary chapters in a special addendum (Chaps. 3Q-36), in which the necessary facts from manifold theory and vector bundle theory are briefly summ作者: Banister 時間: 2025-3-22 23:48
https://doi.org/10.1007/978-3-642-86493-3ix . = .. (matrix .= ..) of connection forms. The connection ?. sets the horizontal subspace .. of the tangent space ..(..) in correspondence with each tangent vector . (point of the total space .. of the tangent bundle .). Similarly, the connection ?. sets the horizontal subspace .. ? .. (..) in correspondence with each point . ∈ ...作者: 委屈 時間: 2025-3-23 02:59 作者: 警告 時間: 2025-3-23 06:30 作者: DEAF 時間: 2025-3-23 09:49 作者: clarify 時間: 2025-3-23 15:51 作者: 四牛在彎曲 時間: 2025-3-23 20:12
0938-0396 name "chapter" is more usual. Therefore, the name of subdivisions was changed in the translation, although no structural surgery was performed. I have also added a brief bibliography, which was absent in the original edition. The first978-3-642-07434-9978-3-662-04433-9Series ISSN 0938-0396 作者: enormous 時間: 2025-3-23 22:32
Textbook 2001cal Sciences," the origin of a book has no significance, and the name "chapter" is more usual. Therefore, the name of subdivisions was changed in the translation, although no structural surgery was performed. I have also added a brief bibliography, which was absent in the original edition. The first作者: 一起 時間: 2025-3-24 03:39
Affine Connections,= (., .., ...,..) of the manifold . defines a chart (.., ..) of the manifold .. for which .. = .... The coordinates of the vector . ∈ .. in this chart are the coordinates .., ..., .. of the point . = .. in the chart (.) and the coordinates of this vector in the basis . of the linear space .... The l作者: 可互換 時間: 2025-3-24 10:19 作者: Foreknowledge 時間: 2025-3-24 10:40 作者: 蜈蚣 時間: 2025-3-24 18:46 作者: 鋼筆尖 時間: 2025-3-24 20:53
Palais and Kobayashi Theorems,bitrary linear topological space .. This allows defining .. in an obvious way: it suffices to replace open sets of the space ?. with those of the space . everywhere in the usual definition of a smooth manifold (see the addendum). We obtain Hilbert, Banach, locally convex, etc., manifolds depending o作者: Odyssey 時間: 2025-3-25 00:09 作者: 萬靈丹 時間: 2025-3-25 07:21
Harmonic Functionals and Related Topics,.) be an arbitrary chart of an arbitrary (pseudo-)Riemannian space ., let ||..|| be the matrix of components of the metric tensor . in the chart (.), and let . be its determinant. The transformation formula for the matrix of a quadratic form under a change of basis directly implies that under a chan作者: transplantation 時間: 2025-3-25 08:04
Gaussian Curvature,..., ..). Then the formula.defines the function <.> on ., which does not depend on the choice of the coordinates ..,..., ... Therefore, this formula correctly defines the function <.> on the whole manifold .作者: entitle 時間: 2025-3-25 13:50 作者: 撕裂皮肉 時間: 2025-3-25 17:45
Einführung in den W?rme- und StoffaustauschProposition 3.2 implies that for any point p ∈ . of a locally symmetric connection space . there exists at most one affine mapping . → . that coincides with a locally geodesic symmetry .. on a certain normal neighborhood of the point .. This mapping (when it exists) is called a . and is denoted by .., as before.作者: 不規(guī)則 時間: 2025-3-25 20:41 作者: cartilage 時間: 2025-3-26 00:18 作者: 未完成 時間: 2025-3-26 07:00 作者: 他一致 時間: 2025-3-26 12:29
Methoden der chinesischen Medizin,For a Riemannian (but not a pseudo-Riemannian) space . along with the energy Lagrangian, we can also consider the Lagrangian. which is expressed in local coordinates by作者: indoctrinate 時間: 2025-3-26 13:35
https://doi.org/10.1007/978-3-642-53260-3We can replace the real coordinates . and . on a surface . with one complex coordinate . = . + .. In the case where the coordinates . and . are isothermal, the coordinate . is called a . on the surface. (Certain authors also apply this name to the coordinates . and ..)作者: 混沌 時間: 2025-3-26 19:10
Schallempfang und Schallaufzeichnung,For a (pseudo-)Riemannian space . we can use the metric tensor . to lower the superscript of the curvature tensor ., i.e., introduce a tensor of type (4,0) with the components . We emphasize that the lowered subscript is assumed to be the .. Specifically for this reason, the components of the tensor . are denoted by ...作者: hypnogram 時間: 2025-3-26 22:50 作者: 牌帶來 時間: 2025-3-27 03:38 作者: 替代品 時間: 2025-3-27 07:27 作者: 消毒 時間: 2025-3-27 12:36
Structural Equations. Local Symmetries,As we know (see Chap. 36), instead of the curvature tensor, it is convenient to consider the ..作者: FILLY 時間: 2025-3-27 13:59 作者: figurine 時間: 2025-3-27 20:32
Lie Functor,The main goal of this chapter is to present the procedure for reconstructing a Lie group from its Lie algebra. Moreover, incidentally, we here present certain general mathematical concepts that were already mentioned repeatedly in passing.作者: Offstage 時間: 2025-3-28 01:51
Affine Fields and Related Topics,As Exercise 5.5 shows, Lie groups are a particular case of symmetric spaces. This gives us an idea to generalize the construction of the Lie algebra of a Lie group to symmetric spaces. This can be done, but instead of Lie algebras, we obtain more general algebraic objects, as should be expected.作者: Hemodialysis 時間: 2025-3-28 03:53
Cartan Theorem,The Lie ternary . constructed in the previous chapter depends on the choice of the point .0∈., i.e., it is a function of the pair (.0). Such pairs are called .. A .: (.0) → (.0) of punctured spaces is a morphism . → . such that .(.0) = .0. It is clear that all punctured symmetric spaces and their morphisms form a category.作者: biopsy 時間: 2025-3-28 06:50
Metric Properties of Geodesics,For a Riemannian (but not a pseudo-Riemannian) space . along with the energy Lagrangian, we can also consider the Lagrangian. which is expressed in local coordinates by作者: debble 時間: 2025-3-28 13:37
Minimal Surfaces,We can replace the real coordinates . and . on a surface . with one complex coordinate . = . + .. In the case where the coordinates . and . are isothermal, the coordinate . is called a . on the surface. (Certain authors also apply this name to the coordinates . and ..)作者: 冷峻 時間: 2025-3-28 17:50
Curvature in Riemannian Space,For a (pseudo-)Riemannian space . we can use the metric tensor . to lower the superscript of the curvature tensor ., i.e., introduce a tensor of type (4,0) with the components . We emphasize that the lowered subscript is assumed to be the .. Specifically for this reason, the components of the tensor . are denoted by ...作者: nostrum 時間: 2025-3-28 19:02
Some Special Tensors,The Gauss—Bonnet theorem in the previous chapter directly implies that the ... (it is the same for all metrics).作者: 一窩小鳥 時間: 2025-3-29 00:59
Surfaces with Conformal Structure,The curvature tensor . of a (pseudo-)Riemannian space χ according to Corollary 17.1, admits a decomposition of the form . where . is the Bianchi tensor with the components . the .. The latter tensor has an interesting geometric sense.作者: 猛烈責(zé)罵 時間: 2025-3-29 06:49
Mappings and Submanifolds I,Let . and . be Riemannian (or pseudo-Riemannian) spaces with the metric tensors . and . and the Riemannian connections ?. and ?.. Moreover, let . = dim . and . = dim ..作者: 引水渠 時間: 2025-3-29 10:30 作者: Badger 時間: 2025-3-29 15:03
Geometry VI978-3-662-04433-9Series ISSN 0938-0396 作者: 得罪 時間: 2025-3-29 15:49 作者: groggy 時間: 2025-3-29 19:57
Einführung in den Sprachkern von SQL-99= (., .., ...,..) of the manifold . defines a chart (.., ..) of the manifold .. for which .. = .... The coordinates of the vector . ∈ .. in this chart are the coordinates .., ..., .. of the point . = .. in the chart (.) and the coordinates of this vector in the basis . of the linear space .... The l作者: 非秘密 時間: 2025-3-30 02:28
Reiner Kolla,Paul Molitor,Hans Georg Osthofwith respect to an arbitrary connection ? on a manifold . are operators.defined on the linear space α. and having properties 1, 2, and 3 indicated in Chap. 1. Moreover, because for ξ = .., the vector bundle T.. ξ is just the tensor bundle .... over the manifold ., in accordance with the general resu作者: Hemiplegia 時間: 2025-3-30 05:35 作者: ANNUL 時間: 2025-3-30 10:21
Hexameter und elegisches Distichon, not using local coordinates. Each smooth function . on . × . and each point . ∈ . define the smooth function . on . (.). We can use this to set the vector field .. on . × . in correspondence with each vector field . on ., defining its action on an arbitrary function . ∈ .(. × .) by 作者: Accrue 時間: 2025-3-30 15:14
Aufbereitung fester Abfallstoffe,bitrary linear topological space .. This allows defining .. in an obvious way: it suffices to replace open sets of the space ?. with those of the space . everywhere in the usual definition of a smooth manifold (see the addendum). We obtain Hilbert, Banach, locally convex, etc., manifolds depending o作者: Abnormal 時間: 2025-3-30 19:54 作者: 嚴峻考驗 時間: 2025-3-30 23:45
Schallempfang und Schallaufzeichnung,.) be an arbitrary chart of an arbitrary (pseudo-)Riemannian space ., let ||..|| be the matrix of components of the metric tensor . in the chart (.), and let . be its determinant. The transformation formula for the matrix of a quadratic form under a change of basis directly implies that under a chan作者: 氣候 時間: 2025-3-31 01:19
https://doi.org/10.1007/978-3-0348-8662-8..., ..). Then the formula.defines the function <.> on ., which does not depend on the choice of the coordinates ..,..., ... Therefore, this formula correctly defines the function <.> on the whole manifold .作者: Lineage 時間: 2025-3-31 06:58 作者: 亞麻制品 時間: 2025-3-31 12:55 作者: Functional 時間: 2025-3-31 13:37 作者: DOLT 時間: 2025-3-31 21:31
https://doi.org/10.1007/978-3-0348-8662-8..., ..). Then the formula.defines the function <.> on ., which does not depend on the choice of the coordinates ..,..., ... Therefore, this formula correctly defines the function <.> on the whole manifold .