派博傳思國際中心

標題: Titlebook: Geometry VI; Riemannian Geometry M. M. Postnikov Textbook 2001 Springer-Verlag Berlin Heidelberg 2001 Lie groups.Minimal surface.Riemannian [打印本頁]

作者: ominous    時間: 2025-3-21 19:50
書目名稱Geometry VI影響因子(影響力)




書目名稱Geometry VI影響因子(影響力)學(xué)科排名




書目名稱Geometry VI網(wǎng)絡(luò)公開度




書目名稱Geometry VI網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometry VI被引頻次




書目名稱Geometry VI被引頻次學(xué)科排名




書目名稱Geometry VI年度引用




書目名稱Geometry VI年度引用學(xué)科排名




書目名稱Geometry VI讀者反饋




書目名稱Geometry VI讀者反饋學(xué)科排名





作者: Ischemic-Stroke    時間: 2025-3-21 20:35

作者: 收養(yǎng)    時間: 2025-3-22 01:32

作者: Thyroxine    時間: 2025-3-22 05:38

作者: 使服水土    時間: 2025-3-22 11:38

作者: incontinence    時間: 2025-3-22 15:49

作者: incontinence    時間: 2025-3-22 19:53
0938-0396 ies "Lectures on Geometry. " Therefore, to make the presentation relatively independent and self-contained in the English translation, I have added supplementary chapters in a special addendum (Chaps. 3Q-36), in which the necessary facts from manifold theory and vector bundle theory are briefly summ
作者: Banister    時間: 2025-3-22 23:48
https://doi.org/10.1007/978-3-642-86493-3ix . = .. (matrix .= ..) of connection forms. The connection ?. sets the horizontal subspace .. of the tangent space ..(..) in correspondence with each tangent vector . (point of the total space .. of the tangent bundle .). Similarly, the connection ?. sets the horizontal subspace .. ? .. (..) in correspondence with each point . ∈ ...
作者: 委屈    時間: 2025-3-23 02:59

作者: 警告    時間: 2025-3-23 06:30

作者: DEAF    時間: 2025-3-23 09:49

作者: clarify    時間: 2025-3-23 15:51

作者: 四牛在彎曲    時間: 2025-3-23 20:12
0938-0396 name "chapter" is more usual. Therefore, the name of subdivisions was changed in the translation, although no structural surgery was performed. I have also added a brief bibliography, which was absent in the original edition. The first978-3-642-07434-9978-3-662-04433-9Series ISSN 0938-0396
作者: enormous    時間: 2025-3-23 22:32
Textbook 2001cal Sciences," the origin of a book has no significance, and the name "chapter" is more usual. Therefore, the name of subdivisions was changed in the translation, although no structural surgery was performed. I have also added a brief bibliography, which was absent in the original edition. The first
作者: 一起    時間: 2025-3-24 03:39
Affine Connections,= (., .., ...,..) of the manifold . defines a chart (.., ..) of the manifold .. for which .. = .... The coordinates of the vector . ∈ .. in this chart are the coordinates .., ..., .. of the point . = .. in the chart (.) and the coordinates of this vector in the basis . of the linear space .... The l
作者: 可互換    時間: 2025-3-24 10:19

作者: Foreknowledge    時間: 2025-3-24 10:40

作者: 蜈蚣    時間: 2025-3-24 18:46

作者: 鋼筆尖    時間: 2025-3-24 20:53
Palais and Kobayashi Theorems,bitrary linear topological space .. This allows defining .. in an obvious way: it suffices to replace open sets of the space ?. with those of the space . everywhere in the usual definition of a smooth manifold (see the addendum). We obtain Hilbert, Banach, locally convex, etc., manifolds depending o
作者: Odyssey    時間: 2025-3-25 00:09

作者: 萬靈丹    時間: 2025-3-25 07:21
Harmonic Functionals and Related Topics,.) be an arbitrary chart of an arbitrary (pseudo-)Riemannian space ., let ||..|| be the matrix of components of the metric tensor . in the chart (.), and let . be its determinant. The transformation formula for the matrix of a quadratic form under a change of basis directly implies that under a chan
作者: transplantation    時間: 2025-3-25 08:04
Gaussian Curvature,..., ..). Then the formula.defines the function <.> on ., which does not depend on the choice of the coordinates ..,..., ... Therefore, this formula correctly defines the function <.> on the whole manifold .
作者: entitle    時間: 2025-3-25 13:50

作者: 撕裂皮肉    時間: 2025-3-25 17:45
Einführung in den W?rme- und StoffaustauschProposition 3.2 implies that for any point p ∈ . of a locally symmetric connection space . there exists at most one affine mapping . → . that coincides with a locally geodesic symmetry .. on a certain normal neighborhood of the point .. This mapping (when it exists) is called a . and is denoted by .., as before.
作者: 不規(guī)則    時間: 2025-3-25 20:41

作者: cartilage    時間: 2025-3-26 00:18

作者: 未完成    時間: 2025-3-26 07:00

作者: 他一致    時間: 2025-3-26 12:29
Methoden der chinesischen Medizin,For a Riemannian (but not a pseudo-Riemannian) space . along with the energy Lagrangian, we can also consider the Lagrangian. which is expressed in local coordinates by
作者: indoctrinate    時間: 2025-3-26 13:35
https://doi.org/10.1007/978-3-642-53260-3We can replace the real coordinates . and . on a surface . with one complex coordinate . = . + .. In the case where the coordinates . and . are isothermal, the coordinate . is called a . on the surface. (Certain authors also apply this name to the coordinates . and ..)
作者: 混沌    時間: 2025-3-26 19:10
Schallempfang und Schallaufzeichnung,For a (pseudo-)Riemannian space . we can use the metric tensor . to lower the superscript of the curvature tensor ., i.e., introduce a tensor of type (4,0) with the components . We emphasize that the lowered subscript is assumed to be the .. Specifically for this reason, the components of the tensor . are denoted by ...
作者: hypnogram    時間: 2025-3-26 22:50

作者: 牌帶來    時間: 2025-3-27 03:38

作者: 替代品    時間: 2025-3-27 07:27

作者: 消毒    時間: 2025-3-27 12:36
Structural Equations. Local Symmetries,As we know (see Chap. 36), instead of the curvature tensor, it is convenient to consider the ..
作者: FILLY    時間: 2025-3-27 13:59

作者: figurine    時間: 2025-3-27 20:32
Lie Functor,The main goal of this chapter is to present the procedure for reconstructing a Lie group from its Lie algebra. Moreover, incidentally, we here present certain general mathematical concepts that were already mentioned repeatedly in passing.
作者: Offstage    時間: 2025-3-28 01:51
Affine Fields and Related Topics,As Exercise 5.5 shows, Lie groups are a particular case of symmetric spaces. This gives us an idea to generalize the construction of the Lie algebra of a Lie group to symmetric spaces. This can be done, but instead of Lie algebras, we obtain more general algebraic objects, as should be expected.
作者: Hemodialysis    時間: 2025-3-28 03:53
Cartan Theorem,The Lie ternary . constructed in the previous chapter depends on the choice of the point .0∈., i.e., it is a function of the pair (.0). Such pairs are called .. A .: (.0) → (.0) of punctured spaces is a morphism . → . such that .(.0) = .0. It is clear that all punctured symmetric spaces and their morphisms form a category.
作者: biopsy    時間: 2025-3-28 06:50
Metric Properties of Geodesics,For a Riemannian (but not a pseudo-Riemannian) space . along with the energy Lagrangian, we can also consider the Lagrangian. which is expressed in local coordinates by
作者: debble    時間: 2025-3-28 13:37
Minimal Surfaces,We can replace the real coordinates . and . on a surface . with one complex coordinate . = . + .. In the case where the coordinates . and . are isothermal, the coordinate . is called a . on the surface. (Certain authors also apply this name to the coordinates . and ..)
作者: 冷峻    時間: 2025-3-28 17:50
Curvature in Riemannian Space,For a (pseudo-)Riemannian space . we can use the metric tensor . to lower the superscript of the curvature tensor ., i.e., introduce a tensor of type (4,0) with the components . We emphasize that the lowered subscript is assumed to be the .. Specifically for this reason, the components of the tensor . are denoted by ...
作者: nostrum    時間: 2025-3-28 19:02
Some Special Tensors,The Gauss—Bonnet theorem in the previous chapter directly implies that the ... (it is the same for all metrics).
作者: 一窩小鳥    時間: 2025-3-29 00:59
Surfaces with Conformal Structure,The curvature tensor . of a (pseudo-)Riemannian space χ according to Corollary 17.1, admits a decomposition of the form . where . is the Bianchi tensor with the components . the .. The latter tensor has an interesting geometric sense.
作者: 猛烈責(zé)罵    時間: 2025-3-29 06:49
Mappings and Submanifolds I,Let . and . be Riemannian (or pseudo-Riemannian) spaces with the metric tensors . and . and the Riemannian connections ?. and ?.. Moreover, let . = dim . and . = dim ..
作者: 引水渠    時間: 2025-3-29 10:30

作者: Badger    時間: 2025-3-29 15:03
Geometry VI978-3-662-04433-9Series ISSN 0938-0396
作者: 得罪    時間: 2025-3-29 15:49

作者: groggy    時間: 2025-3-29 19:57
Einführung in den Sprachkern von SQL-99= (., .., ...,..) of the manifold . defines a chart (.., ..) of the manifold .. for which .. = .... The coordinates of the vector . ∈ .. in this chart are the coordinates .., ..., .. of the point . = .. in the chart (.) and the coordinates of this vector in the basis . of the linear space .... The l
作者: 非秘密    時間: 2025-3-30 02:28
Reiner Kolla,Paul Molitor,Hans Georg Osthofwith respect to an arbitrary connection ? on a manifold . are operators.defined on the linear space α. and having properties 1, 2, and 3 indicated in Chap. 1. Moreover, because for ξ = .., the vector bundle T.. ξ is just the tensor bundle .... over the manifold ., in accordance with the general resu
作者: Hemiplegia    時間: 2025-3-30 05:35

作者: ANNUL    時間: 2025-3-30 10:21
Hexameter und elegisches Distichon, not using local coordinates. Each smooth function . on . × . and each point . ∈ . define the smooth function . on . (.). We can use this to set the vector field .. on . × . in correspondence with each vector field . on ., defining its action on an arbitrary function . ∈ .(. × .) by
作者: Accrue    時間: 2025-3-30 15:14
Aufbereitung fester Abfallstoffe,bitrary linear topological space .. This allows defining .. in an obvious way: it suffices to replace open sets of the space ?. with those of the space . everywhere in the usual definition of a smooth manifold (see the addendum). We obtain Hilbert, Banach, locally convex, etc., manifolds depending o
作者: Abnormal    時間: 2025-3-30 19:54

作者: 嚴峻考驗    時間: 2025-3-30 23:45
Schallempfang und Schallaufzeichnung,.) be an arbitrary chart of an arbitrary (pseudo-)Riemannian space ., let ||..|| be the matrix of components of the metric tensor . in the chart (.), and let . be its determinant. The transformation formula for the matrix of a quadratic form under a change of basis directly implies that under a chan
作者: 氣候    時間: 2025-3-31 01:19
https://doi.org/10.1007/978-3-0348-8662-8..., ..). Then the formula.defines the function <.> on ., which does not depend on the choice of the coordinates ..,..., ... Therefore, this formula correctly defines the function <.> on the whole manifold .
作者: Lineage    時間: 2025-3-31 06:58

作者: 亞麻制品    時間: 2025-3-31 12:55

作者: Functional    時間: 2025-3-31 13:37

作者: DOLT    時間: 2025-3-31 21:31
https://doi.org/10.1007/978-3-0348-8662-8..., ..). Then the formula.defines the function <.> on ., which does not depend on the choice of the coordinates ..,..., ... Therefore, this formula correctly defines the function <.> on the whole manifold .




歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
资阳市| 廊坊市| 开封县| 苗栗市| 光泽县| 蒙阴县| 北碚区| 沁源县| 庐江县| 甘孜县| 乐都县| 柯坪县| 阿合奇县| 加查县| 舟曲县| 中西区| 英山县| 民权县| 石河子市| 日土县| 衡南县| 交城县| 封丘县| 保亭| 溧阳市| 昌吉市| 柳林县| 大悟县| 金平| 珲春市| 西贡区| 鄂伦春自治旗| 海丰县| 贡山| 延寿县| 甘南县| 新蔡县| 广水市| 临沭县| 丽水市| 石台县|