派博傳思國際中心

標(biāo)題: Titlebook: Geometric Structure of High-Dimensional Data and Dimensionality Reduction; Jianzhong Wang Book 2012 Higher Education Press, Beijing and Sp [打印本頁]

作者: MASS    時間: 2025-3-21 17:58
書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction影響因子(影響力)




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction影響因子(影響力)學(xué)科排名




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction網(wǎng)絡(luò)公開度




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction被引頻次




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction被引頻次學(xué)科排名




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction年度引用




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction年度引用學(xué)科排名




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction讀者反饋




書目名稱Geometric Structure of High-Dimensional Data and Dimensionality Reduction讀者反饋學(xué)科排名





作者: 刺穿    時間: 2025-3-21 23:20
Geometric Structure of High-Dimensional Data and Dimensionality Reduction
作者: 摘要記錄    時間: 2025-3-22 03:42

作者: 發(fā)微光    時間: 2025-3-22 07:58

作者: octogenarian    時間: 2025-3-22 10:56
Geometric Structure of High-Dimensional Data system on a data set defines a data graph, which can be considered as a discrete form of a manifold. In Section 2, we introduce the basic concepts of graphs. In Section 3, the spectral graph analysis is introduced as a tool for analyzing the data geometry. Particularly, the Laplacian on a graph is
作者: 終點(diǎn)    時間: 2025-3-22 16:54

作者: 終點(diǎn)    時間: 2025-3-22 18:33

作者: Licentious    時間: 2025-3-22 23:03

作者: ironic    時間: 2025-3-23 04:38
Local Tangent Space Alignmentensional representation of the patch. An alignment technique is introduced in LTSA to align the local representation to a global one. The chapter is organized as follows. In Section 11.1, we describe the method, paying more attention to the global alignment technique. In Section 11.2, the LTSA algor
作者: 耕種    時間: 2025-3-23 08:17

作者: Sputum    時間: 2025-3-23 09:43

作者: 寬大    時間: 2025-3-23 16:03
Fast Algorithms for DR Approximation. In Section 15.2, we present the randomized low rank approximation algorithms. In Section 15.3, greedy lank-revealing algorithms (GAT) and randomized anisotropic transformation algorithms (RAT), which approximate leading eigenvalues and eigenvectors of DR kernels, are introduced. Numerical experime
作者: 植物學(xué)    時間: 2025-3-23 18:53

作者: OVERT    時間: 2025-3-23 22:12

作者: PRO    時間: 2025-3-24 02:37
https://doi.org/10.1057/978-1-137-53792-8 efficient, yet produces sufficient accuracy with a high probability. In Section 7.1, we give a review of Lipschitz embedding. In Section 7.2, we introduce random matrices and random projection algorithms. In Section 7.3, the justification of the validity of random projection is presented in detail.
作者: CHAFE    時間: 2025-3-24 08:00
Jozef Lacko,Ladislav Kusňír,Ivan Slameňn 9.1, we describe the MVU method and the corresponding maximization model. In Section 9.2, we give a brief review of SDP and introduce several popular SDP software packages. The experiments and applications of MVU are included in Section 9.3. The LMVU is discussed in Section 9.4.
作者: 貧困    時間: 2025-3-24 12:38
https://doi.org/10.1007/978-1-4615-9813-8ensional representation of the patch. An alignment technique is introduced in LTSA to align the local representation to a global one. The chapter is organized as follows. In Section 11.1, we describe the method, paying more attention to the global alignment technique. In Section 11.2, the LTSA algor
作者: 小溪    時間: 2025-3-24 15:24

作者: 預(yù)定    時間: 2025-3-24 22:39

作者: Adjourn    時間: 2025-3-25 00:53
Eating Characteristics and Temperament. In Section 15.2, we present the randomized low rank approximation algorithms. In Section 15.3, greedy lank-revealing algorithms (GAT) and randomized anisotropic transformation algorithms (RAT), which approximate leading eigenvalues and eigenvectors of DR kernels, are introduced. Numerical experime
作者: 冰雹    時間: 2025-3-25 06:23

作者: giggle    時間: 2025-3-25 09:33

作者: 用肘    時間: 2025-3-25 12:46
Geometric Structure of High-Dimensional Datahe data geometry is inherited from the manifold. Since the underlying manifold is hidden, it is hard to know its geometry by the classical manifold calculus. The data graph is a useful tool to reveal the data geometry. To construct a data graph, we first find the neighborhood system on the data, whi
作者: PHAG    時間: 2025-3-25 16:36
Data Models and Structures of Kernels of DRrs, which represent the objects of interest. In the second type, the data describe the similarities (or dissimilarities) of objects that cannot be digitized or hidden. The output of a DR processing with an input of the first type is a low-dimensional data set, having the same cardinality as the inpu
作者: Climate    時間: 2025-3-25 23:09

作者: admission    時間: 2025-3-26 03:47

作者: Prostatism    時間: 2025-3-26 05:53
Random Projectionus norm of the matrix of data difference. The reduced data of PCA consists of several leading eigenvectors of the covariance matrix of the data set. Hence, PCA may not preserve the local separation of the original data. To respect local properties of data in dimensionality reduction (DR), we employ
作者: 暫時別動    時間: 2025-3-26 11:24

作者: 課程    時間: 2025-3-26 14:50

作者: 生銹    時間: 2025-3-26 17:52

作者: 長矛    時間: 2025-3-26 23:42
Local Tangent Space Alignmentame geometric intuitions as LLE: If a data set is sampled from a smooth manifold, then the neighbors of each point remain nearby and similarly co-located in the low dimensional space. LTSA uses a different approach to the embedded space compared with LLE. In LLE, each point in the data set is linear
作者: HATCH    時間: 2025-3-27 02:22

作者: Silent-Ischemia    時間: 2025-3-27 06:25

作者: Monolithic    時間: 2025-3-27 12:56
Diffusion Mapsbserved data resides. In Chapter 12, it was pointed out that Laplace-Beltrami operator directly links up with the heat diffusion operator by the exponential formula for positive self-adjoint operators. Therefore, they have the same eigenvector set, and the corresponding eigenvalues are linked by the
作者: 廚房里面    時間: 2025-3-27 17:36
Fast Algorithms for DR Approximationta vectors is very large. The spectral decomposition of a large dimensioanl kernel encounters difficulties in at least three aspects: large memory usage, high computational complexity, and computational instability. Although the kernels in some nonlinear DR methods are sparse matrices, which enable
作者: 六邊形    時間: 2025-3-27 18:59

作者: PANT    時間: 2025-3-28 00:14
https://doi.org/10.1007/978-3-642-27497-8HEP; dimensionality reduction; geometric diffusion; intrinsic dimensionality of data; manifolds; neighbor
作者: 步兵    時間: 2025-3-28 05:59
St Ephrem and the Pursuit of Wisdom2 discusses the acquisition of high-dimensional data. When dimensions of the data are very high, we shall meet the so-called curse of dimensionality, which is discussed in Section 3. The concepts of extrinsic and intrinsic dimensions of data are discussed in Section 4. It is pointed out that most hi
作者: 吸引人的花招    時間: 2025-3-28 09:28

作者: Adulterate    時間: 2025-3-28 11:43
https://doi.org/10.1007/978-1-349-22299-5he data geometry is inherited from the manifold. Since the underlying manifold is hidden, it is hard to know its geometry by the classical manifold calculus. The data graph is a useful tool to reveal the data geometry. To construct a data graph, we first find the neighborhood system on the data, whi
作者: FAWN    時間: 2025-3-28 16:18
Kevin McDermott,Vítězslav Sommerrs, which represent the objects of interest. In the second type, the data describe the similarities (or dissimilarities) of objects that cannot be digitized or hidden. The output of a DR processing with an input of the first type is a low-dimensional data set, having the same cardinality as the inpu
作者: 討人喜歡    時間: 2025-3-28 22:45

作者: Kinetic    時間: 2025-3-29 02:59

作者: painkillers    時間: 2025-3-29 04:32

作者: 使更活躍    時間: 2025-3-29 09:24

作者: 迷住    時間: 2025-3-29 13:27
Jozef Lacko,Ladislav Kusňír,Ivan Slameňetween the pairs of all neighbors of each point in the data set. Since the method keeps the local maximum variance in dimensionality reduction processing, it is called maximum variance unfolding (MVU). Like multidimensional scaling (MDS), MVU can be applied to the cases that only the local similarit
作者: 儲備    時間: 2025-3-29 18:25

作者: flaggy    時間: 2025-3-29 20:02

作者: geriatrician    時間: 2025-3-30 00:05
https://doi.org/10.1007/978-3-322-82834-7n a low-dimentional manifold .. Let . be the coordinate mapping on . so that . = .(.)is a DR of .. Each component of the coordinate mapping . is a linear function on .. Hence, all components of . nearly reside on the numerically null space of the Laplace-Beltrsmi operator on .. In Leigs method, a La
作者: 領(lǐng)袖氣質(zhì)    時間: 2025-3-30 07:07
https://doi.org/10.1007/978-1-4612-0553-1 conceptual framework of HLLE may be viewed as a modification of the Laplacian Eigenmaps framework. Let . be the observed high-dimensional data which reside on a low-dimentional manifold . and . be the coordinate mapping on . so that . = .(.)is a DR of .. In Laplacian eigenmaps method, . is found in
作者: 避開    時間: 2025-3-30 11:10





歡迎光臨 派博傳思國際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
松滋市| 汕头市| 宜黄县| 桐乡市| 黎川县| 锦州市| 湖口县| 炎陵县| 色达县| 海伦市| 郸城县| 明星| 乳源| 顺平县| 晋宁县| 吐鲁番市| 宁河县| 惠安县| 甘孜县| 景宁| 鄂托克前旗| 北碚区| 栖霞市| 清镇市| 怀宁县| 舞阳县| 铁岭县| 秦安县| 吉林省| 当雄县| 榆中县| 桂平市| 长春市| 皋兰县| 津市市| 龙口市| 南康市| 靖宇县| 鄂托克前旗| 大厂| 荔浦县|