派博傳思國(guó)際中心

標(biāo)題: Titlebook: Geometric Harmonic Analysis II; Function Spaces Meas Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2022 The Editor(s) (if applicable) and T [打印本頁(yè)]

作者: 存貨清單    時(shí)間: 2025-3-21 20:02
書(shū)目名稱(chēng)Geometric Harmonic Analysis II影響因子(影響力)




書(shū)目名稱(chēng)Geometric Harmonic Analysis II影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Geometric Harmonic Analysis II網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Geometric Harmonic Analysis II網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Geometric Harmonic Analysis II被引頻次




書(shū)目名稱(chēng)Geometric Harmonic Analysis II被引頻次學(xué)科排名




書(shū)目名稱(chēng)Geometric Harmonic Analysis II年度引用




書(shū)目名稱(chēng)Geometric Harmonic Analysis II年度引用學(xué)科排名




書(shū)目名稱(chēng)Geometric Harmonic Analysis II讀者反饋




書(shū)目名稱(chēng)Geometric Harmonic Analysis II讀者反饋學(xué)科排名





作者: Physiatrist    時(shí)間: 2025-3-21 20:46

作者: 勉勵(lì)    時(shí)間: 2025-3-22 02:30
Hardy Spaces on Ahlfors Regular Sets,he usefulness and versatility of a brand of Hardy spaces which places minimal regularity and structural demands on the underlying space. Here we are concerned with Hardy spaces on Ahlfors regular subsets of the Euclidean ambient and, by further building on the work in [9], consider topics such as th
作者: 袖章    時(shí)間: 2025-3-22 05:46

作者: 斜    時(shí)間: 2025-3-22 09:16
Morrey-Campanato Spaces, Morrey Spaces, and Their Pre-Duals on Ahlfors Regular Sets,ces (cf., e.g., [2],?[6],?[63],?[117],?[155],?[157],?[184] and the references therein). The goal here is to develop a theory for these scales of spaces, which is comparable in scope and power to its Euclidean counterpart, in more general geometric settings. To set the stage, throughout we let . (whe
作者: 摸索    時(shí)間: 2025-3-22 15:24
Besov and Triebel-Lizorkin Spaces on Ahlfors Regular Sets,Euclidean setting. Here we are concerned with adaptations of these scales of spaces to more general ambients, which only enjoy but a small fraction of the structural richness of the Euclidean space. This is in line with efforts made in the direction of extending the standard theory of Besov and Trie
作者: 摸索    時(shí)間: 2025-3-22 20:46
Boundary Traces from Weighted Sobolev Spaces into Besov Spaces,Next, in §., we consider traces from weighted Sobolev spaces defined in a given .-domain . by relying on P.?Jones’ extension theorem to reduce matters to the full Euclidean setting considered earlier. The next order of business is to construct extension operators from boundary Besov spaces into our
作者: Rustproof    時(shí)間: 2025-3-22 22:47

作者: regale    時(shí)間: 2025-3-23 02:28
Sobolev Spaces on the Geometric Measure Theoretic Boundary of Sets of Locally Finite Perimeter,ein), here the goal is to introduce a scale of Sobolev spaces on the geometric measure theoretic boundaries of sets of locally finite perimeter in the Euclidean setting and on Riemannian manifolds. This builds and expands on the work in [97],?[139], and?[141]. Our brand of “boundary” Sobolev spaces
作者: liaison    時(shí)間: 2025-3-23 05:37

作者: transient-pain    時(shí)間: 2025-3-23 13:17
Morrey-Campanato Spaces, Morrey Spaces, and Their Pre-Duals on Ahlfors Regular Sets,s, which is comparable in scope and power to its Euclidean counterpart, in more general geometric settings. To set the stage, throughout we let . (where . with .) be a closed Ahlfors regular set and abbreviate ..
作者: TIA742    時(shí)間: 2025-3-23 14:03

作者: 大范圍流行    時(shí)間: 2025-3-23 18:03

作者: Rankle    時(shí)間: 2025-3-23 22:21

作者: Conscientious    時(shí)間: 2025-3-24 02:30

作者: 圓桶    時(shí)間: 2025-3-24 09:13

作者: debunk    時(shí)間: 2025-3-24 11:33
Self-Help and Mutual Aid Organizations,discussed in §.. Finally, in §. we study boundary traces from weighted “maximal” Sobolev spaces, defined by requiring the membership of distributional derivatives to solid maximal Lebesgue spaces introduced in [133].
作者: 緩解    時(shí)間: 2025-3-24 15:05

作者: annexation    時(shí)間: 2025-3-24 22:25

作者: 吸引人的花招    時(shí)間: 2025-3-24 23:17

作者: linguistics    時(shí)間: 2025-3-25 03:57

作者: Corporeal    時(shí)間: 2025-3-25 10:05
Diagnosis of Allergic Reactions to Drugs, the structural richness of the Euclidean space. This is in line with efforts made in the direction of extending the standard theory of Besov and Triebel-Lizorkin spaces to the geometric measure theoretic context of spaces of homogeneous type; see, e.g., [90],?[86],?[91],?[92],?[203],?[89],?[152],?and [206].
作者: 說(shuō)笑    時(shí)間: 2025-3-25 12:58

作者: textile    時(shí)間: 2025-3-25 16:37
Banach Function Spaces, Extrapolation, and Orlicz Spaces,imal operator happens to be bounded. Finally, in §. we focus on Orlicz spaces which, in particular, are natural examples of classical Banach function spaces for which the machinery developed so far applies.
作者: 鄙視讀作    時(shí)間: 2025-3-25 21:20

作者: barium-study    時(shí)間: 2025-3-26 02:12
Luís Pereira Justo,Helena Maria Calilplicable to more general topological vector spaces (which are not necessarily locally convex). In §. we recall some basic results to this effect, obtained via a “dual-less” approach to Fredholm theory. Ultimately, this shows that the core principle of the theory, namely that . is pervasive.
作者: 女歌星    時(shí)間: 2025-3-26 06:10

作者: 健談的人    時(shí)間: 2025-3-26 10:14
Prachi Suman,Anupama Paul,Awanish Mishraspaces (of order one) in the Euclidean setting, based on ordinary weak derivatives. Such a compatibility reinforces the idea that this is indeed a natural generalization of the standard scale of Sobolev spaces from the (entire) Euclidean ambient to sets exhibiting a much more intricate geometry (bot
作者: floodgate    時(shí)間: 2025-3-26 16:37

作者: 擺動(dòng)    時(shí)間: 2025-3-26 16:57

作者: 教義    時(shí)間: 2025-3-27 00:17

作者: 高調(diào)    時(shí)間: 2025-3-27 03:09
Dorina Mitrea,Irina Mitrea,Marius MitreaProvides a systematics treatment of principal scales of function spaces in analysis.Builds a solid platform facilitating applications to singular integrals and boundary value problems.Methodically hig
作者: endarterectomy    時(shí)間: 2025-3-27 06:37

作者: 使人煩燥    時(shí)間: 2025-3-27 12:40
Besov and Triebel-Lizorkin Spaces in Open Sets, . are then defined in §. via restriction from the corresponding scales in the Euclidean setting (in the sense of distributions). Certain quasi-Banach envelopes of Besov and Triebel-Lizorkin spaces are concretely identified in §..
作者: hypertension    時(shí)間: 2025-3-27 14:14
Compulsive Drug Use and Brain Reward SystemsIn this chapter we elaborate on basic terminology and results pertaining to vector spaces and operator theory (in §.), quasi-normed spaces (in §.), real interpolation of quasilinear operators (in §.), complex interpolation of quasi-Banach spaces (in §.), and some useful categories of topological vector spaces (in §.).
作者: Orthodontics    時(shí)間: 2025-3-27 21:02

作者: 彎曲的人    時(shí)間: 2025-3-28 00:17

作者: Dawdle    時(shí)間: 2025-3-28 04:55

作者: Fresco    時(shí)間: 2025-3-28 06:40

作者: Petechiae    時(shí)間: 2025-3-28 13:32

作者: enchant    時(shí)間: 2025-3-28 18:04

作者: coddle    時(shí)間: 2025-3-28 22:44

作者: Precursor    時(shí)間: 2025-3-29 01:46
Methadone Maintenance Comes of Age,he literature; cf. e.g., [14]), and indicate that a significant portion of the classical theory goes through for this more general brand, which we dub .. This is done in §.. The relevance of this extension is that a variety of scales of spaces of interest, such as Morrey spaces, block spaces, as wel
作者: Allege    時(shí)間: 2025-3-29 06:09
https://doi.org/10.1007/978-1-4614-7261-2ces (cf., e.g., [2],?[6],?[63],?[117],?[155],?[157],?[184] and the references therein). The goal here is to develop a theory for these scales of spaces, which is comparable in scope and power to its Euclidean counterpart, in more general geometric settings. To set the stage, throughout we let . (whe
作者: 生命    時(shí)間: 2025-3-29 07:14





歡迎光臨 派博傳思國(guó)際中心 (http://www.pjsxioz.cn/) Powered by Discuz! X3.5
卢氏县| 侯马市| 正宁县| 阳泉市| 铜陵市| 林西县| 丰都县| 瓮安县| 济阳县| 南木林县| 泽州县| 敖汉旗| 班戈县| 姜堰市| 南郑县| 洛川县| 遵义市| 昌图县| 崇左市| 松桃| 佛冈县| 江津市| 砚山县| 肇东市| 大竹县| 海盐县| 阿克苏市| 垫江县| 曲沃县| 保德县| 襄城县| 密云县| 绥阳县| 富民县| 淮安市| 柏乡县| 许昌市| 原平市| 丹江口市| 彰化县| 康马县|